Limit theorems for excursion sets of stationary random fields (1307.6050v1)
Abstract: We give an overview of the recent asymptotic results on the geometry of excursion sets of stationary random fields. Namely, we cover a number of limit theorems of central type for the volume of excursions of stationary (quasi--, positively or negatively) associated random fields with stochastically continuous realizations for a fixed excursion level. This class includes in particular Gaussian, Poisson shot noise, certain infinitely divisible, $\alpha$--stable and max--stable random fields satisfying some extra dependence conditions. Functional limit theorems (with the excursion level being an argument of the limiting Gaussian process) are reviewed as well. For stationary isotropic $C1$--smooth Gaussian random fields similar results are available also for the surface area of the excursion set. Statistical tests of Gaussianity of a random field which are of importance to real data analysis as well as results for an increasing excursion level round up the paper.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.