Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A central limit theorem for the number of excursion set components of Gaussian fields (2205.09085v1)

Published 18 May 2022 in math.PR

Abstract: For a smooth stationary Gaussian field on $\mathbb{R}d$ and level $\ell \in \mathbb{R}$, we consider the number of connected components of the excursion set ${f \ge \ell}$ (or level set ${f = \ell}$) contained in large domains. The mean of this quantity is known to scale like the volume of the domain under general assumptions on the field. We prove that, assuming sufficient decay of correlations (e.g. the Bargmann-Fock field), a central limit theorem holds with volume-order scaling. Previously such a result had only been established for `additive' geometric functionals of the excursion/level sets (e.g. the volume or Euler characteristic) using Hermite expansions. Our approach, based on a martingale analysis, is more robust and can be generalised to a wider class of topological functionals. A major ingredient in the proof is a third moment bound on critical points, which is of independent interest.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.