Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Three central limit theorems for the unbounded excursion component of a Gaussian field (2403.03033v2)

Published 5 Mar 2024 in math.PR

Abstract: For a smooth, stationary Gaussian field $f$ on Euclidean space with fast correlation decay, there is a critical level $\ell_c$ such that the excursion set ${f\geq\ell}$ contains a (unique) unbounded component if and only if $\ell<\ell_c$. We prove central limit theorems for the volume, surface area and Euler characteristic of this unbounded component restricted to a growing box. For planar fields, the results hold at all supercritical levels (i.e. all $\ell<\ell_c$). In higher dimensions the results hold at all sufficiently low levels (all $\ell<-\ell_c<\ell_c$) but could be extended to all supercritical levels by proving the decay of truncated connection probabilities. Our proof is based on the martingale central limit theorem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. Random fields and geometry. Springer Monographs in Mathematics. Springer, New York, 2007.
  2. On the finiteness of the moments of the measure of level sets of random fields. Braz. J. Probab. Stat., 37(1):219–245, 2023.
  3. J.-M. Azaïs and M. Wschebor. Level sets and extrema of random processes and fields. John Wiley & Sons, Inc., Hoboken, NJ, 2009.
  4. V. Beffara and D. Gayet. Percolation of random nodal lines. Publ. Math. Inst. Hautes Études Sci., 126:131–176, 2017.
  5. D. Beliaev. Smooth Gaussian fields and percolation. Probab. Surv., 20:897–937, 2023.
  6. D. Beliaev and Z. Kereta. On the Bogomolny-Schmit conjecture. J. Phys. A, 46(45):455003, 5, 2013.
  7. Fluctuations of the number of excursion sets of planar Gaussian fields. Probab. Math. Phys., 3(1):105–144, 2022.
  8. A central limit theorem for the number of excursion set components of Gaussian fields. The Annals of Probability, 52(3):882 – 922, 2024.
  9. A covariance formula for the number of excursion set components of Gaussian fields and applications. Ann. Inst. Henri Poincaré Probab. Stat., 2024.
  10. M. V. Berry. Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature. J. Phys. A, 35(13):3025–3038, 2002.
  11. Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1987.
  12. N. Branco and C. J. Silva. Universality class for bootstrap percolation with m= 3 on the cubic lattice. International Journal of Modern Physics C, 10(05):921–930, 1999.
  13. V. Cammarota and D. Marinucci. A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions. Ann. Probab., 46(6):3188–3228, 2018.
  14. V. Cammarota and D. Marinucci. A reduction principle for the critical values of random spherical harmonics. Stochastic Process. Appl., 130(4):2433–2470, 2020.
  15. Fluctuations of the Euler-Poincaré characteristic for random spherical harmonics. Proc. Amer. Math. Soc., 144(11):4759–4775, 2016.
  16. On the distribution of the critical values of random spherical harmonics. J. Geom. Anal., 26(4):3252–3324, 2016.
  17. C. Chaves and B. Koiller. Universality, thresholds and critical exponents in correlated percolation. Physica A: Statistical Mechanics and its Applications, 218(3-4):271–278, 1995.
  18. Bernoulli percolation above threshold: an invasion percolation analysis. Ann. Probab., 15(4):1272–1287, 1987.
  19. H. Duminil-Copin. Sixty years of percolation. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pages 2829–2856. World Sci. Publ., Hackensack, NJ, 2018.
  20. Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension d≥3𝑑3d\geq 3italic_d ≥ 3. Ann. Probab., 51(1):228–276, 2023.
  21. A. Estrade and J. R. León. A central limit theorem for the Euler characteristic of a Gaussian excursion set. Ann. Probab., 44(6):3849–3878, 2016.
  22. L. Gass and M. Stecconi. The number of critical points of a gaussian field: finiteness of moments. arXiv preprint arXiv:2305.17586, 2023.
  23. The random geometry of equilibrium phases. In Phase transitions and critical phenomena, Vol. 18, volume 18 of Phase Transit. Crit. Phenom., pages 1–142. Academic Press, San Diego, CA, 2001.
  24. G. Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1999.
  25. P. Hall and C. C. Heyde. Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.
  26. A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
  27. S. R. Jain and R. Samajdar. Nodal portraits of quantum billiards: domains, lines, and statistics. Rev. Modern Phys., 89(4):045005, 66, 2017.
  28. S. Janson. Gaussian Hilbert spaces, volume 129 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1997.
  29. O. Kallenberg. Foundations of modern probability, volume 99 of Probability Theory and Stochastic Modelling. Springer, Cham, [2021] ©2021. Third edition [of 1464694].
  30. H. Kesten and S. Lee. The central limit theorem for weighted minimal spanning trees on random points. Ann. Appl. Probab., 6(2):495–527, 1996.
  31. H. Kesten and Y. Zhang. A central limit theorem for “critical” first-passage percolation in two dimensions. Probab. Theory Related Fields, 107(2):137–160, 1997.
  32. M. Kratz and S. Vadlamani. Central limit theorem for Lipschitz-Killing curvatures of excursion sets of Gaussian random fields. J. Theoret. Probab., 31(3):1729–1758, 2018.
  33. On the universality of crossing probabilities in two-dimensional percolation. J. Statist. Phys., 67(3-4):553–574, 1992.
  34. S. Lee. The central limit theorem for Euclidean minimal spanning trees. I. Ann. Appl. Probab., 7(4):996–1020, 1997.
  35. Universal finite-size scaling functions for percolation on three-dimensional lattices. Phys. Rev. E, 58:1521–1527, Aug 1998.
  36. D. Marinucci and M. Rossi. Stein-Malliavin approximations for nonlinear functionals of random eigenfunctions on 𝕊dsuperscript𝕊𝑑\mathbb{S}^{d}blackboard_S start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. J. Funct. Anal., 268(8):2379–2420, 2015.
  37. D. Marinucci and I. Wigman. On the area of excursion sets of spherical Gaussian eigenfunctions. J. Math. Phys., 52:093301, 2011.
  38. D. Marinucci and I. Wigman. On nonlinear functionals of random spherical eigenfunctions. Comm. Math. Phys., 327(3):849–872, 2014.
  39. S. Muirhead. Percolation of strongly correlated Gaussian fields II. Sharpness of the phase transition. to appear in Ann. Probab., 2024.
  40. The phase transition for planar Gaussian percolation models without FKG. to appear in Ann. Probab., 2023. With an appendix by L. Köhler-Schindler.
  41. S. Muirhead and F. Severo. Percolation of strongly correlated Gaussian fields I. Decay of subcritical connection probabilities. to appear in Prob. Math. Phys., 202.
  42. S. Muirhead and H. Vanneuville. The sharp phase transition for level set percolation of smooth planar Gaussian fields. Ann. Inst. Henri Poincaré Probab. Stat., 56(2):1358–1390, 2020.
  43. D. Müller. A central limit theorem for Lipschitz-Killing curvatures of Gaussian excursions. J. Math. Anal. Appl., 452(2):1040–1081, 2017.
  44. F. Nazarov and M. Sodin. Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions. J. Math. Phys. Anal. Geom., 12(3):205–278, 2016.
  45. L. I. Nicolaescu. A CLT concerning critical points of random functions on a Euclidean space. Stochastic Process. Appl., 127(10):3412–3446, 2017.
  46. Nodal statistics of planar random waves. Comm. Math. Phys., 369(1):99–151, 2019.
  47. M. D. Penrose. A central limit theorem with applications to percolation, epidemics and Boolean models. Ann. Probab., 29(4):1515–1546, 2001.
  48. Unexpected topology of the temperature fluctuations in the cosmic microwave background. A&A, 627:A163, 2019.
  49. Gaussian processes for machine learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, 2006.
  50. A. Rivera. Talagrand’s inequality in planar Gaussian field percolation. Electron. J. Probab., 26:Paper No. 26, 25, 2021.
  51. M. Rossi. The geometry of spherical random fields. arXiv preprint arXiv:1603.07575, 2016.
  52. M. Sahimi. Applications of percolation theory, volume 213 of Applied Mathematical Sciences. Springer, Cham, second edition, 2023.
  53. F. Severo. Sharp phase transition for Gaussian percolation in all dimensions. Ann. H. Lebesgue, 5:987–1008, 2022.
  54. F. Severo. Uniqueness of Unbounded Component for Level Sets of Smooth Gaussian Fields. International Mathematics Research Notices, page rnad262, 11 2023.
  55. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1):58–73, 1996.
  56. Y. Zhang. A martingale approach in the study of percolation clusters on the ℤdsuperscriptℤ𝑑\mathbb{Z}^{d}blackboard_Z start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT lattice. J. Theoret. Probab., 14(1):165–187, 2001.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: