Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 137 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On a generalized entropic uncertainty relation in the case of the qubit (1306.0409v1)

Published 3 Jun 2013 in quant-ph

Abstract: We revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. R\'enyi entropy is used as uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of R\'enyi entropies for any couple of (positive) entropic indices (\alpha,\beta). Thus, we have overcome the H\"older conjugacy constraint imposed on the entropic indices by Riesz-Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0 , 1/2] x [0 , 1/2] in the \alpha-\beta plane, and a semi-analytical expression on the line \beta = \alpha. It is seen that previous results are included as particular cases. Moreover, we present an analytical but suboptimal bound for any couple of indices. In all cases, we provide the minimizing states.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.