Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 137 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies (1303.4467v4)

Published 19 Mar 2013 in quant-ph, math-ph, and math.MP

Abstract: We formulate uncertainty relations for mutually unbiased bases and symmetric informationally complete measurements in terms of the R\'{e}nyi and Tsallis entropies. For arbitrary number of mutually unbiased bases in a finite-dimensional Hilbert space, we give a family of Tsallis $\alpha$-entropic bounds for $\alpha\in(0;2]$. Relations in a model of detection inefficiences are obtained. In terms of R\'{e}nyi's entropies, lower bounds are given for $\alpha\in[2;\infty)$. State-dependent and state-independent forms of such bounds are both given. Uncertainty relations in terms of the min-entropy are separately considered. We also obtain lower bounds in term of the so-called symmetrized entropies. The presented results for mutually unbiased bases are extensions of some bounds previously derived in the literature. We further formulate new properties of symmetric informationally complete measurements in a finite-dimensional Hilbert space. For a given state and any SIC-POVM, the index of coincidence of generated probability distribution is exactly calculated. Short notes are made on potential use of this result in entanglement detection. Further, we obtain state-dependent entropic uncertainty relations for a single SIC-POVM. Entropic bounds are derived in terms of the R\'{e}nyi $\alpha$-entropies for $\alpha\in[2;\infty)$ and the Tsallis $\alpha$-entropies for $\alpha\in(0;2]$. In the Tsallis formulation, a case of detection inefficiences is briefly mentioned. For a pair of symmetric informationally complete measurements, we also obtain an entropic bound of Maassen-Uffink type.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.