Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Entropic uncertainty relations for extremal unravelings of super-operators (1006.4699v3)

Published 24 Jun 2010 in quant-ph, math-ph, and math.MP

Abstract: A way to pose the entropic uncertainty principle for trace-preserving super-operators is presented. It is based on the notion of extremal unraveling of a super-operator. For given input state, different effects of each unraveling result in some probability distribution at the output. As it is shown, all Tsallis' entropies of positive order as well as some of Renyi's entropies of this distribution are minimized by the same unraveling of a super-operator. Entropic relations between a state ensemble and the generated density matrix are revisited in terms of both the adopted measures. Using Riesz's theorem, we obtain two uncertainty relations for any pair of generalized resolutions of the identity in terms of the Renyi and Tsallis entropies. The inequality with Renyi's entropies is an improvement of the previous one, whereas the inequality with Tsallis' entropies is a new relation of a general form. The latter formulation is explicitly shown for a pair of complementary observables in a $d$-level system and for the angle and the angular momentum. The derived general relations are immediately applied to extremal unravelings of two super-operators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube