Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structural and Functional Discovery in Dynamic Networks with Non-negative Matrix Factorization (1305.7169v1)

Published 30 May 2013 in cs.SI, physics.soc-ph, and stat.ML

Abstract: Time series of graphs are increasingly prevalent in modern data and pose unique challenges to visual exploration and pattern extraction. This paper describes the development and application of matrix factorizations for exploration and time-varying community detection in time-evolving graph sequences. The matrix factorization model allows the user to home in on and display interesting, underlying structure and its evolution over time. The methods are scalable to weighted networks with a large number of time points or nodes, and can accommodate sudden changes to graph topology. Our techniques are demonstrated with several dynamic graph series from both synthetic and real world data, including citation and trade networks. These examples illustrate how users can steer the techniques and combine them with existing methods to discover and display meaningful patterns in sizable graphs over many time points.

Citations (52)

Summary

We haven't generated a summary for this paper yet.