Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Topological Changes in Dynamic Community Networks (1707.07362v1)

Published 23 Jul 2017 in cs.SI, cs.DM, and physics.soc-ph

Abstract: The study of time-varying (dynamic) networks (graphs) is of fundamental importance for computer network analytics. Several methods have been proposed to detect the effect of significant structural changes in a time series of graphs. The main contribution of this work is a detailed analysis of a dynamic community graph model. This model is formed by adding new vertices, and randomly attaching them to the existing nodes. It is a dynamic extension of the well-known stochastic blockmodel. The goal of the work is to detect the time at which the graph dynamics switches from a normal evolution -- where balanced communities grow at the same rate -- to an abnormal behavior -- where communities start merging. In order to circumvent the problem of decomposing each graph into communities, we use a metric to quantify changes in the graph topology as a function of time. The detection of anomalies becomes one of testing the hypothesis that the graph is undergoing a significant structural change. In addition the the theoretical analysis of the test statistic, we perform Monte Carlo simulations of our dynamic graph model to demonstrate that our test can detect changes in graph topology.

Citations (3)

Summary

We haven't generated a summary for this paper yet.