Papers
Topics
Authors
Recent
Search
2000 character limit reached

Black-Box Complexity: Breaking the $O(n \log n)$ Barrier of LeadingOnes

Published 24 Oct 2012 in cs.DS and cs.NE | (1210.6465v1)

Abstract: We show that the unrestricted black-box complexity of the $n$-dimensional XOR- and permutation-invariant LeadingOnes function class is $O(n \log (n) / \log \log n)$. This shows that the recent natural looking $O(n\log n)$ bound is not tight. The black-box optimization algorithm leading to this bound can be implemented in a way that only 3-ary unbiased variation operators are used. Hence our bound is also valid for the unbiased black-box complexity recently introduced by Lehre and Witt (GECCO 2010). The bound also remains valid if we impose the additional restriction that the black-box algorithm does not have access to the objective values but only to their relative order (ranking-based black-box complexity).

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.