Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Better Fixed-Arity Unbiased Black-Box Algorithms (1804.05443v2)

Published 15 Apr 2018 in cs.NE

Abstract: In their GECCO'12 paper, Doerr and Doerr proved that the $k$-ary unbiased black-box complexity of OneMax on $n$ bits is $O(n/k)$ for $2\le k\le O(\log n)$. We propose an alternative strategy for achieving this unbiased black-box complexity when $3\le k\le\log_2 n$. While it is based on the same idea of block-wise optimization, it uses $k$-ary unbiased operators in a different way. For each block of size $2{k-1}-1$ we set up, in $O(k)$ queries, a virtual coordinate system, which enables us to use an arbitrary unrestricted algorithm to optimize this block. This is possible because this coordinate system introduces a bijection between unrestricted queries and a subset of $k$-ary unbiased operators. We note that this technique does not depend on OneMax being solved and can be used in more general contexts. This together constitutes an algorithm which is conceptually simpler than the one by Doerr and Doerr, and at the same time achieves better constant factors in the asymptotic notation. Our algorithm works in $(2+o(1))\cdot n/(k-1)$, where $o(1)$ relates to $k$. Our experimental evaluation of this algorithm shows its efficiency already for $3\le k\le6$.

Summary

We haven't generated a summary for this paper yet.