Papers
Topics
Authors
Recent
Search
2000 character limit reached

Genons, twist defects, and projective non-Abelian braiding statistics

Published 23 Aug 2012 in cond-mat.str-el and hep-th | (1208.4834v2)

Abstract: It has recently been realized that a general class of non-abelian defects can be created in conventional topological states by introducing extrinsic defects, such as lattice dislocations or superconductor-ferromagnet domain walls in conventional quantum Hall states or topological insulators. In this paper, we begin by placing these defects within the broader conceptual scheme of extrinsic twist defects associated with symmetries of the topological state. We explicitly study several classes of examples, including $Z_2$ and $Z_3$ twist defects, where the topological state with N twist defects can be mapped to a topological state without twist defects on a genus $g \propto N$ surface. To emphasize this connection we refer to the twist defects as genons. We develop methods to compute the projective non-abelian braiding statistics of the genons, and we find the braiding is given by adiabatic modular transformations, or Dehn twists, of the topological state on the effective genus g surface. We study the relation between this projective braiding statistics and the ordinary non-abelian braiding statistics obtained when the genons become deconfined, finite-energy excitations. We find that the braiding is generally different, in contrast to the Majorana case, which opens the possibility for fundamentally novel behavior. We find situations where the genons have quantum dimension 2 and can be used for universal topological quantum computing (TQC), while the host topological state is by itself non-universal for TQC.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.