Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Defects Between Gapped Boundaries in Two-Dimensional Topological Phases of Matter (1703.03564v2)

Published 10 Mar 2017 in cond-mat.str-el, math-ph, math.MP, math.QA, and quant-ph

Abstract: Defects between gapped boundaries provide a possible physical realization of projective non-abelian braid statistics. A notable example is the projective Majorana/parafermion braid statistics of boundary defects in fractional quantum Hall/topological insulator and superconductor heterostructures. In this paper, we develop general theories to analyze the topological properties and projective braiding of boundary defects of topological phases of matter in two spatial dimensions. We present commuting Hamiltonians to realize defects between gapped boundaries in any $(2+1)D$ untwisted Dijkgraaf-Witten theory, and use these to describe their topological properties such as their quantum dimension. By modeling the algebraic structure of boundary defects through multi-fusion categories, we establish a bulk-edge correspondence between certain boundary defects and symmetry defects in the bulk. Even though it is not clear how to physically braid the defects, this correspondence elucidates the projective braid statistics for many classes of boundary defects, both amongst themselves and with bulk anyons. Specifically, three such classes of importance to condensed matter physics/topological quantum computation are studied in detail: (1) A boundary defect version of Majorana and parafermion zero modes, (2) a similar version of genons in bilayer theories, and (3) boundary defects in $\mathfrak{D}(S_3)$.

Summary

We haven't generated a summary for this paper yet.