Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of the EM Algorithm for Gaussian Mixtures with Unbalanced Mixing Coefficients (1206.6427v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: The speed of convergence of the Expectation Maximization (EM) algorithm for Gaussian mixture model fitting is known to be dependent on the amount of overlap among the mixture components. In this paper, we study the impact of mixing coefficients on the convergence of EM. We show that when the mixture components exhibit some overlap, the convergence of EM becomes slower as the dynamic range among the mixing coefficients increases. We propose a deterministic anti-annealing algorithm, that significantly improves the speed of convergence of EM for such mixtures with unbalanced mixing coefficients. The proposed algorithm is compared against other standard optimization techniques like BFGS, Conjugate Gradient, and the traditional EM algorithm. Finally, we propose a similar deterministic anti-annealing based algorithm for the Dirichlet process mixture model and demonstrate its advantages over the conventional variational Bayesian approach.

Citations (66)

Summary

We haven't generated a summary for this paper yet.