Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Geometric Traversal Algorithm for Reward-Uncertain MDPs (1202.3754v1)

Published 14 Feb 2012 in cs.AI

Abstract: Markov decision processes (MDPs) are widely used in modeling decision making problems in stochastic environments. However, precise specification of the reward functions in MDPs is often very difficult. Recent approaches have focused on computing an optimal policy based on the minimax regret criterion for obtaining a robust policy under uncertainty in the reward function. One of the core tasks in computing the minimax regret policy is to obtain the set of all policies that can be optimal for some candidate reward function. In this paper, we propose an efficient algorithm that exploits the geometric properties of the reward function associated with the policies. We also present an approximate version of the method for further speed up. We experimentally demonstrate that our algorithm improves the performance by orders of magnitude.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Eunsoo Oh (2 papers)
  2. Kee-Eung Kim (24 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.