Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regret-based Reward Elicitation for Markov Decision Processes (1205.2619v1)

Published 9 May 2012 in cs.AI

Abstract: The specification of aMarkov decision process (MDP) can be difficult. Reward function specification is especially problematic; in practice, it is often cognitively complex and time-consuming for users to precisely specify rewards. This work casts the problem of specifying rewards as one of preference elicitation and aims to minimize the degree of precision with which a reward function must be specified while still allowing optimal or near-optimal policies to be produced. We first discuss how robust policies can be computed for MDPs given only partial reward information using the minimax regret criterion. We then demonstrate how regret can be reduced by efficiently eliciting reward information using bound queries, using regret-reduction as a means for choosing suitable queries. Empirical results demonstrate that regret-based reward elicitation offers an effective way to produce near-optimal policies without resorting to the precise specification of the entire reward function.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kevin Regan (5 papers)
  2. Craig Boutilier (78 papers)
Citations (85)

Summary

We haven't generated a summary for this paper yet.