Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Expressivity of Multidimensional Markov Reward (2307.12184v1)

Published 22 Jul 2023 in cs.AI

Abstract: We consider the expressivity of Markov rewards in sequential decision making under uncertainty. We view reward functions in Markov Decision Processes (MDPs) as a means to characterize desired behaviors of agents. Assuming desired behaviors are specified as a set of acceptable policies, we investigate if there exists a scalar or multidimensional Markov reward function that makes the policies in the set more desirable than the other policies. Our main result states both necessary and sufficient conditions for the existence of such reward functions. We also show that for every non-degenerate set of deterministic policies, there exists a multidimensional Markov reward function that characterizes it

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Shuwa Miura (4 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.