Papers
Topics
Authors
Recent
2000 character limit reached

Statistical physics approach to graphical games: local and global interactions

Published 11 Apr 2011 in cond-mat.stat-mech and cs.GT | (1104.1929v1)

Abstract: In a graphical game agents play with their neighbors on a graph to achieve an appropriate state of equilibrium. Here relevant problems are characterizing the equilibrium set and discovering efficient algorithms to find such an equilibrium (solution). We consider a representation of games that extends over graphical games to deal conveniently with both local a global interactions and use the cavity method of statistical physics to study the geometrical structure of the equilibria space. The method also provides a distributive and local algorithm to find an equilibrium. For simplicity we consider only pure Nash equilibria but the methods can as well be extended to deal with (approximated) mixed Nash equilirbia.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.