Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study on Computing Equilibria in Polymatrix Games (1602.06865v2)

Published 22 Feb 2016 in cs.GT

Abstract: The Nash equilibrium is an important benchmark for behaviour in systems of strategic autonomous agents. Polymatrix games are a succinct and expressive representation of multiplayer games that model pairwise interactions between players. The empirical performance of algorithms to solve these games has received little attention, despite their wide-ranging applications. In this paper we carry out a comprehensive empirical study of two prominent algorithms for computing a sample equilibrium in these games, Lemke's algorithm that computes an exact equilibrium, and a gradient descent method that computes an approximate equilibrium. Our study covers games arising from a number of interesting applications. We find that Lemke's algorithm can compute exact equilibria in relatively large games in a reasonable amount of time. If we are willing to accept (high-quality) approximate equilibria, then we can deal with much larger games using the descent method. We also report on which games are most challenging for each of the algorithms.

Citations (13)

Summary

We haven't generated a summary for this paper yet.