Papers
Topics
Authors
Recent
2000 character limit reached

The Geometry of Noncommutative Singularity Resolutions

Published 28 Feb 2011 in math.AG, hep-th, math.RA, and math.RT | (1102.5741v1)

Abstract: We introduce a geometric realization of noncommutative singularity resolutions. To do this, we first present a new conjectural method of obtaining conventional resolutions using coordinate rings of matrix-valued functions. We verify this conjecture for all cyclic quotient surface singularities, the Kleinian D_n and E_6 surface singularities, the conifold singularity, and a non-isolated singularity, using appropriate quiver algebras. This conjecture provides a possible new generalization of the classical McKay correspondence. Then, using symplectic reduction within these rings, we obtain new, non-conventional resolutions that are hidden if only commutative functions are considered. Geometrically, these non-conventional resolutions result from shrinking exceptional loci to ramified (non-Azumaya) point-like spheres.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.