Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noncommutative quasi-resolutions (1802.09092v3)

Published 25 Feb 2018 in math.RA

Abstract: The notion of a noncommutative quasi-resolution is introduced for a noncommutative noetherian algebra with singularities, even for a non-Cohen-Macaulay algebra. If A is a commutative normal Gorenstein domain, then anoncommutative quasi-resolution of A naturally produces a noncommutative crepant resolution (NCCR) of A in the sense of Van den Bergh, and vice versa. Under some mild hypotheses, we prove that (i) in dimension two, all noncommutative quasi-resolutions of a given non-commutative algebra are Morita equivalent, and (ii) in dimension three, all noncommutative quasi-resolutions of a given non-commutative algebra are derived equivalent. These assertions generalize important results of Van den Bergh, Iyama-Reiten and Iyama-Wemyss in the commutative and central-finite cases.

Summary

We haven't generated a summary for this paper yet.