Papers
Topics
Authors
Recent
Search
2000 character limit reached

Non-commutative resolutions of quotient singularities

Published 18 Feb 2015 in math.AG and math.RT | (1502.05240v3)

Abstract: In this paper we generalize standard results about non-commutative resolutions of quotient singularities for finite groups to arbitrary reductive groups. We show in particular that quotient singularities for reductive groups always have non-commutative resolutions in an appropriate sense. Moreover we exhibit a large class of such singularities which have (twisted) non-commutative crepant resolutions. We discuss a number of examples, both new and old, that can be treated using our methods. Notably we prove that twisted non-commutative crepant resolutions exist in previously unknown cases for determinantal varieties of symmetric and skew-symmetric matrices. In contrast to almost all prior results in this area our techniques are algebraic and do not depend on knowing a commutative resolution of the singularity.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.