On two conjectural supercongruences of Z.-W. Sun
Abstract: In this paper, we mainly prove two conjectural supercongruences of Sun by using the following identity $$ \sum_{k=0}n\binom{2k}{k}2\binom{2n-2k}{n-k}2=16n\sum_{k=0}n\frac{\binom{n+k}{k}\binom{n}{k}\binom{2k}{k}2}{(-16)k} $$ which arises from a ${}4F_3$ hypergeometric transformation. For any prime $p>3$, we prove that \begin{gather*} \sum{n=0}{p-1}\frac{n+1}{8n}\sum_{k=0}n\binom{2k}{k}2\binom{2n-2k}{n-k}2\equiv(-1){(p-1)/2}p+5p3E_{p-3}\pmod{p4},\ \sum_{n=0}{p-1}\frac{2n+1}{(-16)n}\sum_{k=0}n\binom{2k}{k}2\binom{2n-2k}{n-k}2\equiv(-1){(p-1)/2}p+3p3E_{p-3}\pmod{p4}, \end{gather*} where $E_{p-3}$ is the $(p-3)$th Euler number.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.