Papers
Topics
Authors
Recent
Search
2000 character limit reached

On hitting times of affine boundaries by reflecting Brownian motion and Bessel processes

Published 9 Dec 2010 in math.PR | (1012.2038v1)

Abstract: Firstly, we compute the distribution function for the hitting time of a linear time-dependent boundary $t\mapsto a+bt,\ a\geq 0,\,b\in \R,$ by a reflecting Brownian motion. The main tool hereby is Doob's formula which gives the probability that Brownian motion started inside a wedge does not hit this wedge. Other key ingredients are the time inversion property of Brownian motion and the time reversal property of diffusion bridges. Secondly, this methodology can also be applied for the three dimensional Bessel process. Thirdly, we consider Bessel bridges from 0 to 0 with dimension parameter $\delta>0$ and show that the probability that such a Bessel bridge crosses an affine boundary is equal to the probability that this Bessel bridge stays below some fixed value.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.