Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the first time that an Ito process hits a barrier (1209.2411v1)

Published 10 Sep 2012 in math.PR

Abstract: This work deals with first hitting time densities of Ito processes whose local drift can be modeled in terms of a solution to Burgers equation. In particular, we derive the densities of the first time that these processes reach a moving boundary. We distinguish two cases: (a) the case in which the process has unbounded state space before absorption, and (b) the case in which the process has bounded state space before absorption. The reason as to why this distinction has to be made will be clarified. Next, we classify processes whose local drift can be expressed as a linear combination to solutions of Burgers equation. For example the local drift of a Bessel process of order 5 can be modeled as the sum of two solutions to Burgers equation and thus will be classified as of class $\mathcal{B}2$. Alternatively, the Bessel process of order 3 has a local drift that can be modeled as a solution to Burgers equation and thus will be classified as of class $\mathcal{B}1$. Examples of diffusions within class $\mathcal{B}1$, and hence those to which the results described within apply, are: Brownian motion with linear drfit, the 3D Bessel process, the 3D Bessel bridge, and the Brownian bridge.

Summary

We haven't generated a summary for this paper yet.