Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast Approximation Algorithms for Cut-based Problems in Undirected Graphs (1008.1975v4)

Published 11 Aug 2010 in cs.DS

Abstract: We present a general method of designing fast approximation algorithms for cut-based minimization problems in undirected graphs. In particular, we develop a technique that given any such problem that can be approximated quickly on trees, allows approximating it almost as quickly on general graphs while only losing a poly-logarithmic factor in the approximation guarantee. To illustrate the applicability of our paradigm, we focus our attention on the undirected sparsest cut problem with general demands and the balanced separator problem. By a simple use of our framework, we obtain poly-logarithmic approximation algorithms for these problems that run in time close to linear. The main tool behind our result is an efficient procedure that decomposes general graphs into simpler ones while approximately preserving the cut-flow structure. This decomposition is inspired by the cut-based graph decomposition of R\"acke that was developed in the context of oblivious routing schemes, as well as, by the construction of the ultrasparsifiers due to Spielman and Teng that was employed to preconditioning symmetric diagonally-dominant matrices.

Citations (91)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube