Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Quasipolynomial $(2+\varepsilon)$-Approximation for Planar Sparsest Cut (2105.15187v1)

Published 31 May 2021 in cs.DS

Abstract: The (non-uniform) sparsest cut problem is the following graph-partitioning problem: given a "supply" graph, and demands on pairs of vertices, delete some subset of supply edges to minimize the ratio of the supply edges cut to the total demand of the pairs separated by this deletion. Despite much effort, there are only a handful of nontrivial classes of supply graphs for which constant-factor approximations are known. We consider the problem for planar graphs, and give a $(2+\varepsilon)$-approximation algorithm that runs in quasipolynomial time. Our approach defines a new structural decomposition of an optimal solution using a "patching" primitive. We combine this decomposition with a Sherali-Adams-style linear programming relaxation of the problem, which we then round. This should be compared with the polynomial-time approximation algorithm of Rao (1999), which uses the metric linear programming relaxation and $\ell_1$-embeddings, and achieves an $O(\sqrt{\log n})$-approximation in polynomial time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.