Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extreme Value Laws in Dynamical Systems for Non-smooth Observations

Published 16 Jun 2010 in math.DS, math-ph, math.MP, and math.PR | (1006.3276v1)

Abstract: We prove the equivalence between the existence of a non-trivial hitting time statistics law and Extreme Value Laws in the case of dynamical systems with measures which are not absolutely continuous with respect to Lebesgue. This is a counterpart to the result of the authors in the absolutely continuous case. Moreover, we prove an equivalent result for returns to dynamically defined cylinders. This allows us to show that we have Extreme Value Laws for various dynamical systems with equilibrium states with good mixing properties. In order to achieve these goals we tailor our observables to the form of the measure at hand.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.