Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Anomalous time-scaling of extreme events in infinite systems and Birkhoff sums of infinite observables (1810.10742v3)

Published 25 Oct 2018 in math.DS, math-ph, math.MP, and math.PR

Abstract: We establish quantitative results for the statistical be-ha-vi-our of \emph{infinite systems}. We consider two kinds of infinite system: i) a conservative dynamical system $(f,X,\mu)$ preserving a $\sigma$-finite measure $\mu$ such that $\mu(X)=\infty$; ii) the case where $\mu$ is a probability measure but we consider the statistical behaviour of an observable $\phi\colon X\to[0,\infty)$ which is non-integrable: $\int \phi \, d\mu=\infty$. In the first part of this work we study the behaviour of Birkhoff sums of systems of the kind ii). For certain weakly chaotic systems, we show that these sums can be strongly oscillating. However, if the system has superpolynomial decay of correlations or has a Markov structure, then we show this oscillation cannot happen. In this case we prove asymptotic relations between the behaviour of $\phi $, the local dimension of $\mu$, and on the growth of Birkhoff sums (as time tends to infinity). We then establish several important consequences which apply to infinite systems of the kind i). This includes showing anomalous scalings in extreme event limit laws, or entrance time statistics. We apply our findings to non-uniformly hyperbolic systems preserving an infinite measure, establishing anomalous scalings in the case of logarithm laws of entrance times, dynamical Borel--Cantelli lemmas, almost sure growth rates of extremes, and dynamical run length functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube