Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Naïve Bayes Machine Learning approach in Text Document Classification (1003.1795v1)

Published 9 Mar 2010 in cs.LG and cs.IR

Abstract: Text Document classification aims in associating one or more predefined categories based on the likelihood suggested by the training set of labeled documents. Many machine learning algorithms play a vital role in training the system with predefined categories among which Na\"ive Bayes has some intriguing facts that it is simple, easy to implement and draws better accuracy in large datasets in spite of the na\"ive dependence. The importance of Na\"ive Bayes Machine learning approach has felt hence the study has been taken up for text document classification and the statistical event models available. This survey the various feature selection methods has been discussed and compared along with the metrics related to text document classification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vidhya. K. A (1 paper)
  2. G. Aghila (21 papers)
Citations (62)