Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing SVM and Naive Bayes classifiers for text categorization with Wikitology as knowledge enrichment (1202.4063v1)

Published 18 Feb 2012 in cs.AI and cs.IR

Abstract: The activity of labeling of documents according to their content is known as text categorization. Many experiments have been carried out to enhance text categorization by adding background knowledge to the document using knowledge repositories like Word Net, Open Project Directory (OPD), Wikipedia and Wikitology. In our previous work, we have carried out intensive experiments by extracting knowledge from Wikitology and evaluating the experiment on Support Vector Machine with 10- fold cross-validations. The results clearly indicate Wikitology is far better than other knowledge bases. In this paper we are comparing Support Vector Machine (SVM) and Na\"ive Bayes (NB) classifiers under text enrichment through Wikitology. We validated results with 10-fold cross validation and shown that NB gives an improvement of +28.78%, on the other hand SVM gives an improvement of +6.36% when compared with baseline results. Na\"ive Bayes classifier is better choice when external enriching is used through any external knowledge base.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sundus Hassan (2 papers)
  2. Muhammad Rafi (15 papers)
  3. Muhammad Shahid Shaikh (2 papers)
Citations (73)

Summary

We haven't generated a summary for this paper yet.