Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised learning Methods for Bangla Web Document Categorization (1410.2045v1)

Published 8 Oct 2014 in cs.CL and cs.LG

Abstract: This paper explores the use of machine learning approaches, or more specifically, four supervised learning Methods, namely Decision Tree(C 4.5), K-Nearest Neighbour (KNN), Na\"ive Bays (NB), and Support Vector Machine (SVM) for categorization of Bangla web documents. This is a task of automatically sorting a set of documents into categories from a predefined set. Whereas a wide range of methods have been applied to English text categorization, relatively few studies have been conducted on Bangla language text categorization. Hence, we attempt to analyze the efficiency of those four methods for categorization of Bangla documents. In order to validate, Bangla corpus from various websites has been developed and used as examples for the experiment. For Bangla, empirical results support that all four methods produce satisfactory performance with SVM attaining good result in terms of high dimensional and relatively noisy document feature vectors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ashis Kumar Mandal (5 papers)
  2. Rikta Sen (1 paper)
Citations (88)

Summary

We haven't generated a summary for this paper yet.