Papers
Topics
Authors
Recent
Search
2000 character limit reached

Equivalent characterizations of partial randomness for a recursively enumerable real

Published 17 May 2008 in cs.IT, cs.CC, math.IT, and math.LO | (0805.2691v1)

Abstract: A real number \alpha is called recursively enumerable if there exists a computable, increasing sequence of rational numbers which converges to \alpha. The randomness of a recursively enumerable real \alpha can be characterized in various ways using each of the notions; program-size complexity, Martin-L\"{o}f test, Chaitin's \Omega number, the domination and \Omega-likeness of \alpha, the universality of a computable, increasing sequence of rational numbers which converges to \alpha, and universal probability. In this paper, we generalize these characterizations of randomness over the notion of partial randomness by parameterizing each of the notions above by a real number T\in(0,1]. We thus present several equivalent characterizations of partial randomness for a recursively enumerable real number.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.