Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random numbers as probabilities of machine behaviour (1605.05838v4)

Published 19 May 2016 in cs.CC

Abstract: A fruitful way of obtaining meaningful, possibly concrete, algorithmically random numbers is to consider a potential behaviour of a Turing machine and its probability with respect to a measure (or semi-measure) on the input space of binary codes. For example, Chaitin's Omega is a well known Martin-Loef random number that is obtained by considering the halting probability of a universal prefix-free machine. In the last decade, similar examples have been obtained for higher forms of randomness, i.e. randomness relative to strong oracles. In this work we obtain characterizations of the algorithmically random reals in higher randomness classes, as probabilities of certain events that can happen when an oracle universal machine runs probabilistically on a random oracle. Moreover we apply our analysis to different machine models, including oracle Turing machines, prefix-free machines, and models for infinite online computation. We find that in many cases the arithmetical complexity of a property is directly reflected in the strength of the algorithmic randomness of the probability with which it occurs, on any given universal machine. On the other hand, we point to many examples where this does not happen and the probability is a number whose algorithmic randomness is not the maximum possible (with respect to its arithmetical complexity). Finally we find that, unlike the halting probability of a universal machine, the probabilities of more complex properties like totality, cofinality, computability or completeness do not necessarily have the same Turing degree when they are defined with respect to different universal machines.

Citations (4)

Summary

We haven't generated a summary for this paper yet.