Hybrid Power Plants are integrated systems combining variable renewable sources with conventional thermal units, storage, or power-to-X technologies to optimize grid decarbonization and enhance reliability.
They employ hierarchical, data-driven control strategies—including MPC, observer-based schemes, and real-time optimization—to coordinate disparate energy resources across asset, plant, and grid levels.
Case studies demonstrate that HPPs achieve lower costs, reduced emissions, and improved grid stability through precise scheduling, dynamic constraint management, and advanced control architectures.
Hybrid Power Plants (HPPs), which combine two or more power generation technologies—typically integrating variable renewables (solar photovoltaic, wind, hydropower) with conventional thermal units, storage, or power-to-X components—form a pivotal architecture in contemporary grid decarbonization, reliability enhancement, and market participation. HPPs engineer the coordinated operation of disparate energy resources across temporal, operational, and grid service contexts, leveraging both physical and cybernetic control structures for optimal performance.
1. System Configurations and Component Architectures
HPPs exhibit diverse topologies based on resource mix, power conversion chain, and primary objectives:
Solar PV–Wind–Hydro–Storage: Bulk renewable systems may combine large solar and wind farms with pumped storage hydropower or battery energy storage systems (BESS). For example, the Ometepe case paper in Nicaragua integrates geothermal (baseload), wind (E-53 turbines), PV, and pumped hydro via a crater lake reservoir, enabling 100% renewable penetration and critically reducing required overbuild and storage sizing when baseload is present (Canales et al., 2019).
PV–Wind Hybrid Grid Connection: Algeria’s Adrar HPP consists of a 5 MW PV field (14,320 Amerisolar panels, 358 DC/DC converters) and a 30 MW wind farm (10×Vestas V90-3MW turbines, DFIG direct grid coupling via back-to-back converters) (Kebbati et al., 23 Sep 2025), optimized using improved particle swarm–optimized PI control and yielding <0.2 s MPPT and fast grid support within <1% steady-state error.
PV–Fuel Cell–Grid Hybrid: Systems pairing PV with fuel-cell stacks (e.g., 100 kW PV, 2×50 kW SOFC) for grid-connected operation manage source prioritization, provide low voltage ride-through, and distribute surplus to dump loads. Control design employs a disturbance rejection observer for DC-link voltage and disturbance-decoupled repetitive control for grid-support under faults (Sabir, 2018).
Wind–PV–Hydro–Electrolyzer: Wind–hydrogen hybrids feature variable wind power, grid-tied PV, and electrolyzer modules, demanding precise operational modeling of the electrolyzer’s nonlinear hydrogen curve and multi-state logic (on/off/standby with cold start, segmented linearizations) for economically optimal dispatch (Baumhof et al., 2023).
Thermal–Renewable HPP: Large-scale grid HPPs may embed combined cycle power plants (CCPPs), combining fast gas direct response and buffered steam turbine loops with PV treated as negative load, forming a multi-block LFC system (Jiang et al., 2021).
Advanced HPPs: Emerging architectures include small modular (nuclear) reactors, BESS, and conventional coal, e.g., Mongolia’s hybrid system (1,264 MW coal, 680 MW SMR, 300 MW wind, 115.7 MW PV, 1 MWh BESS), achieving RF≈9%, LCOE≈0.08 /kWh,and37.8</ul><p>Controlandenergymanagementarchitecturesareincreasinglyhierarchical(asset,plant,HPP−level),comprisinglocalassetcontrollersforfastdynamics(deadband,droop,fastfrequencyresponse),plant−levelsetpointtrackingandaggregation,andcentralizedHPPcontrollersformarketandgridinterface(<ahref="/papers/2204.01093"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Longetal.,2022</a>).Supervisorymodulesmaybeimplementedviafeedbackoptimization,subspacepredictivecontrol,orreal−timeMPCs,coordinatingcomponent−levelresponses,incorporatingconstraints,andhandlingforecastuncertainties(<ahref="/papers/2510.16352"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Mukherjeeetal.,18Oct2025</a>,<ahref="/papers/2502.13333"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Desaietal.,18Feb2025</a>).</p><h2class=′paper−heading′id=′mathematical−modeling−system−identification−and−operational−constraints′>2.MathematicalModeling,SystemIdentification,andOperationalConstraints</h2><p>MathematicalabstractioninHPPsaddressesboththephysicalsubsystemsandthecontrollogicinterfacingthem:</p><ul><li><strong>LinearizationandBlockDiagrams:</strong>ForfrequencycontrolunderlargePVpenetration,thecombinedcycleplantismodeledasacascadeoffirst−ordertransferfunctions:governorG_{gov}(s)=1/(T_g s+1),gasturbineG_{turb}(s)=1/(T_t s+1),HRSGG_{HRSG}(s)=1/(T_b s+1),steamturbineG_{ST}(s)=1/(T_m s+1);aggregatefrequencydynamicsG_{sys}(s)=1/(2Hs).Theclosed−loopfrequencyresponseisaproductofthesetransferfunctions,modulatedbyaPI(ormoreadvanced)controller(<ahref="/papers/2108.03783"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Jiangetal.,2021</a>).</li><li><strong>NonlinearandControl−AffineModeling:</strong>Forsubsystemmodelingsuitableforadvancedsupervisorycontrollers,windfarm(rotorspeed\omega_r,torqueinputT_g)isexpressedincontrol−affinedynamics\dot{x}=f(x)+g(x)uwithembeddedLyapunov−basedsetpointtrackingandcontrolbarrierfunctions(CBFs)torespectsafety(e.g.,C_plimit),batterymodels(ECM,SoC,hysteresis),andPVdynamicssimilarlyformulated(<ahref="/papers/2511.04644"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Amplemanetal.,6Nov2025</a>).</li><li><strong>DynamicPowerConstraints(DPC):</strong>Batteryschedulingintegratesvoltageandcurrentenvelopelimits(SOC−dependentviav_{oc}(SOC)=\alpha+\beta\cdot SOC$) into convex piecewise-linear feasibility regions, ensuring real-time control stays within physical bounds and reducing constraint violations by >90% versus static bounds (<a href="/papers/2403.16821" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Cassano et al., 25 Mar 2024</a>).</li>
<li><strong>Electrolyzer Dispatch Modeling:</strong> Multi-state (on/off/standby), multi-segment linearizations capture detailed physics; the mixed-integer program enforces binary state transitions, segment activation, and minimum hydrogen quotas. Under partial-load regimes, multi-segment models yield up to 1.8% more profit and up to 13.5% more hydrogen in a year compared to simplified dispatch (price window analysis quantifies when this added detail is essential) (<a href="/papers/2301.05310" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Baumhof et al., 2023</a>).</li>
</ul>
<p>System identification for predictive or feedback controllers leverages measured plant data, recursively fitting multi-input multi-output (MIMO) models (e.g., subspace predictive control maps $S^*$ for short-horizon forecast and robust tracking under weather uncertainty) (<a href="/papers/2502.13333" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Desai et al., 18 Feb 2025</a>).</p>
<h2 class='paper-heading' id='control-strategies-load-frequency-market-and-grid-services'>3. Control Strategies: Load Frequency, Market, and Grid Services</h2>
<p>HPP control spans the full range of services required for both grid stability and market operations:</p>
<ul>
<li><strong>Load-Frequency Control (LFC):</strong> Hierarchical LFC uses local asset controllers (WT, PV, BESS) for fast frequency response (FFR, FCR), while HPP and plant-level controllers coordinate slower frequency restoration and market setpoints. Issues of double-counting, control counteraction, and robustness under communication delays are mitigated using observer-based schemes (FROB), inspired by disturbance observers, at each hierarchy level, estimating actual frequency contributions and ensuring coordinated action (<a href="/papers/2204.01093" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Long et al., 2022</a>). Simulation results demonstrate distributed FC with FROB achieves rise times <2 s regardless of delay, while centralized control degrades as delay increases.</li>
<li><strong>Predictive and Feedback Optimization:</strong> Supervisory controllers employ gradient-based online updates, tracking the reference $P_randre−allocatingwind,solar,batterysetpointsinrealtime(u_{k+1}=\Pi_{\mathcal U}\{u_k-\alpha_k \nabla_u J(u_k)\}),robusttoweathervariabilityandresourceunpredictability.Co−simulationenvironments(HELICS,Hercules)validatethesecontrollersinhardware−in−the−loopsettings(<ahref="/papers/2510.16352"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Mukherjeeetal.,18Oct2025</a>).</li><li><strong>MarketBiddingandHydrogenTrading:</strong>Feature−drivenlinearpoliciestranslatehistoricalcontextualfeatures(windforecasts,day−aheadprices)intodirectschedulesforpowerandhydrogenproduction,bypassingscenario−basedoptimization.Price−domainvariantsproducepiecewise−affineprice–quantitycurvesfordirectmarketbidding(NordPooletc.).Real−timerulesadjusthydrogensetpointstooptimizeprofitsandenforcedailyquotasundermarketpricedeviations(<ahref="/papers/2310.01385"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Helgrenetal.,2023</a>).</li></ul><h2class=′paper−heading′id=′grid−support−black−start−and−frequency−reserve−enhancement′>4.GridSupport,BlackStart,andFrequencyReserveEnhancement</h2><p>HPPsareincreasinglyengineeredforadvancedgridsupport:</p><ul><li><strong>BlackStartandGrid−FormingCapability:</strong>HybridPV–batteryplantsequippedwithLCL−filteredinvertersanddroop+secondarycontrolcanformtheinitialvoltageandfrequencybus,executestepwisemulti−busenergization(IEEE9−bus),andmimicsynchronousgeneratorbehavior(\omega=\omega^*-m_p(P_{ac}-P^*),V=V^*-n_q(Q_{ac}-Q^*)).Battery/sizingmustaccommodatepeakloads,andauxiliarydampingloadsareessentialforsuppressinginrushduringblack−start(<ahref="/papers/2103.11239"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Nguyenetal.,2021</a>).</li><li><strong>FrequencyContainmentReserve(FCR)inHydro–BESSHybrids:</strong>IntegrationofBESSwithrun−of−riverhydroturbinesunderdouble−layerMPCenablesprovisionofhigh−qualityFCR(fixeddroop,e.g.,125 kW/\mathrm{Hz}),dramaticallyreducinghydraulicactuatorwearandturbinemovements(upto98<li><strong>SchedulingPower−IntensiveOperations:</strong>Forgrid−connectedhydro+BESSHPPs,dynamicpowerconstraints,enforcedinrealtimebasedonvoltage/current/SOC,upgradeschedulingreliabilityforhigh−frequency/rampingservicesandensureactionablesetpointsneverviolatesystemhardware(<ahref="/papers/2403.16821"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Cassanoetal.,25Mar2024</a>).</li></ul><h2class=′paper−heading′id=′economic−environmental−and−feasibility−insights′>5.Economic,Environmental,andFeasibilityInsights</h2><p>Techno−economiccasestudiesrigorouslyanalyzeHPPviability:</p><ul><li><strong>Algeria’sAdrarHPP:</strong>35MWhybrid(PV+Wind)achievesLCOE=0.084/kWh,7.3−yearpayback,andGHGreductions(ΔCO2≈28,400t/yr,ΔSO2≈194t/yr).Feasibilitydependsonpremiumfeed−intariffs,robustgridinfrastructure,andland/maintenancecosts(<ahref="/papers/2509.19558"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Kebbatietal.,23Sep2025</a>).</li><li><strong>OmetepeIsland,Nicaragua:</strong>Presenceofdispatchablegeothermalreduceshybridsystemsizing(wind/PV/PSH)andstoragerequirements,yieldingCOE=0.13/kWh;absenceraisesCOEto0.34/kWhandexcessenergyto67<li><strong>Mongolia’sHybridwithi−SMR:</strong>Systemachieves38LCOE=0.08/kWh.SensitivityanalysishighlightsdominanceofSMRcapexinoverallcost,recommendingtargetedregionswithhighrenewablepotentialandrobustgridinterconnection(<ahref="/papers/2506.15749"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Nerguietal.,18Jun2025</a>).</li><li><strong>ElectrolyzerDispatchModeling:</strong>Forwind−hydrogenhybrids,detailedmulti−state,multi−segmentmodelsareeconomicallyviableundermoderatepricesignalsandenablefinerscheduling/logisticsforhydrogendelivery,withcomputationremainingtractableforoperationalhorizons(<ahref="/papers/2301.05310"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Baumhofetal.,2023</a>).</li></ul><h2class=′paper−heading′id=′advanced−modeling−and−future−design−considerations′>6.AdvancedModelingandFutureDesignConsiderations</h2><p>Emergentmethodologiesandscalabilityconsiderations:</p><ul><li><strong>ControlAffineandModularDesign:</strong>Expressingallsubsystemsin\dot x=f(x)+g(x)u$ form enables modular, scalable control, allowing easy integration of new generation/storage assets under provable stability and safety via CBFs/QPs (Ampleman et al., 6 Nov 2025).
Data-Driven Predictive Control: Subspace identification provides robust, MIMO black-box models, embedding weather uncertainty as probabilistic bounds, with closed-loop RMSE < 100 kW for 12 MW HPPs. Recommendations include recursive model adaptation and integration of market signals (Desai et al., 18 Feb 2025).
Scheduling Enhancement via Dynamic Constraints: DPC integration for BESS scheduling supports fast ancillary services, load-following, and avoids inverter-level violations (Cassano et al., 25 Mar 2024). Piecewise-linear approximation supports real-time convex QP/LP solution and soft constraint extensions for uncertainty management.
Hierarchical and Coordinated Control: Distributed fast-frequency services, compensated via observer-based schemes, are universally recommended to preclude counteraction and enable seamless integration with legacy EMS/SCADA (Long et al., 2022).
Collectively, cutting-edge HPP research converges on architectures where variable renewables, storage devices, and conventional dispatchable plants are judiciously coordinated via hierarchical, data-driven, and safety-critical control, advancing the technical, economic, and environmental performance needed for future power systems.