Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Two-Higgs-Doublet Model (g2HDM)

Updated 3 January 2026
  • g2HDM is a renormalizable extension of the Standard Model featuring two Higgs doublets with independent, non-diagonal Yukawa couplings that allow tree-level FCNH interactions.
  • It produces a rich scalar spectrum including h, H, A, and H⁺, with a mixing angle that aligns the light Higgs with SM couplings while permitting new CP-violating and flavor-changing effects.
  • The model’s phenomenology is tested via kaon and B-meson decays, EDM constraints, and rare decay processes, offering insights into TeV-scale new physics.

The generalized Two-Higgs-Doublet Model (g2HDM) is a renormalizable extension of the Standard Model (SM) featuring two scalar doublets with independent, generally non-diagonal Yukawa couplings to all fermions, and a scalar potential constructed without imposing a discrete Z2Z_2 symmetry. This structure admits tree-level flavor-changing neutral Higgs (FCNH) interactions and an array of possible CP-violating effects, resulting in a phenomenologically rich framework with implications for kaon physics, rare decays, and new physics (NP) searches up to the TeV scale (Hou et al., 2022).

1. Model Structure: Scalar Sector and Yukawa Couplings

In the g2HDM, the Higgs basis is defined such that Φ1\Phi_1 acquires a vacuum expectation value (VEV) Φ10=v/2\langle\Phi_1^0\rangle=v/\sqrt2 and is responsible for the generation of all SM fermion masses, while Φ2\Phi_2 has vanishing VEV and mediates new interactions. The most general, renormalizable Yukawa Lagrangian in the mass basis is given by: LY=QˉLΦ~1YuuR+QˉLΦ1YddR+LˉLΦ1YR+QˉLΦ~2ρuuR+QˉLΦ2ρddR+LˉLΦ2ρR+h.c.-\mathcal{L}_Y = \bar Q_L\,\tilde\Phi_1\,Y^u\,u_R + \bar Q_L\,\Phi_1\,Y^d\,d_R + \bar L_L\,\Phi_1\,Y^\ell\,\ell_R + \bar Q_L\,\tilde\Phi_2\,\rho^u\,u_R + \bar Q_L\,\Phi_2\,\rho^d\,d_R + \bar L_L\,\Phi_2\,\rho^\ell\,\ell_R + \text{h.c.} where YFY^F are the SM Yukawa matrices, and ρF\rho^F are new, generically non-diagonal 3×3 matrices introducing extra Yukawa couplings. After electroweak symmetry breaking (EWSB), fermion masses derive solely from YFY^F, via Mu=v2YuM^u=\tfrac{v}{\sqrt2} Y^u, Md=v2YdM^d=\tfrac{v}{\sqrt2} Y^d, and M=v2YM^\ell=\tfrac{v}{\sqrt2} Y^\ell. The matrices ρF\rho^F are not diagonal in the physical basis, sourcing tree-level FCNH interactions for neutral scalars (Hou et al., 2022).

The physical scalar spectrum—after diagonalization in the CP-conserving basis—comprises a light CP-even Higgs hh resembling the SM Higgs, a heavy CP-even HH, a CP-odd AA, and a charged scalar H±H^\pm. Higgs-fermion interactions, including both diagonal and FCNH structures, are controlled by the mixing angle γ\gamma between the two doublets: Lh,H,A=12fˉi[(λifsγ+ρijfcγ)h+(λifcγρijfsγ)Hisgn(Qf)ρijfA]PRfj+h.c.-\mathcal{L}_{h,H,A} = \frac{1}{\sqrt2}\,\bar f_i \left[ (\lambda^f_i\,s_\gamma+\rho^f_{ij}\,c_\gamma)h +(\lambda^f_i\,c_\gamma-\rho^f_{ij}\,s_\gamma)H -i\,\mathrm{sgn}(Q_f)\,\rho^f_{ij}A \right]P_R\,f_j + \text{h.c.} Here λif=2mif/v\lambda^f_i = \sqrt{2} m^f_i/v, sγ=sinγs_\gamma=\sin\gamma, cγ=cosγc_\gamma=\cos\gamma. For the charged scalar,

LH±=uˉi[(Vρd)ijPR(ρuV)ijPL]djH++νˉiρijPRjH++h.c.-\mathcal{L}_{H^\pm} = \bar u_i\left[(V\,\rho^d)_{ij}P_R-(\rho^{u\dagger}V)_{ij}\,P_L\right]d_j\,H^+ + \bar\nu_i\,\rho^\ell_{ij}P_R\,\ell_j\,H^+ + \text{h.c.}

The alignment limit, cγ0c_\gamma\to0, ensures that hh possesses SM-like couplings while all FCNH couplings involving hh are suppressed, preserving compatibility with LHC Higgs measurements (Hou et al., 2022).

2. Higgs Scalar Potential and Mass Spectrum

The g2HDM scalar potential in the Higgs basis assumes the most general, gauge-invariant, real form (CP-conserving): V=Y1(Φ1Φ1)+Y2(Φ2Φ2)+[Y3Φ1Φ2+h.c.] +12λ1(Φ1Φ1)2+12λ2(Φ2Φ2)2+λ3(Φ1Φ1)(Φ2Φ2)+λ4(Φ1Φ2)(Φ2Φ1) +[12λ5(Φ1Φ2)2+λ6(Φ1Φ1)(Φ1Φ2)+λ7(Φ2Φ2)(Φ1Φ2)+h.c.]\begin{aligned} V &= Y_1(\Phi_1^\dagger\Phi_1) + Y_2(\Phi_2^\dagger\Phi_2) + \left[Y_3\,\Phi_1^\dagger\Phi_2 + \mathrm{h.c.}\right] \ &\quad + \tfrac12\lambda_1(\Phi_1^\dagger\Phi_1)^2 + \tfrac12\lambda_2(\Phi_2^\dagger\Phi_2)^2 + \lambda_3(\Phi_1^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2) + \lambda_4(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1) \ &\quad + \left[\tfrac12\lambda_5(\Phi_1^\dagger\Phi_2)^2 + \lambda_6(\Phi_1^\dagger\Phi_1)(\Phi_1^\dagger\Phi_2) + \lambda_7(\Phi_2^\dagger\Phi_2)(\Phi_1^\dagger\Phi_2) + \text{h.c.}\right] \end{aligned} After symmetry breaking, the physical masses of the scalars are: mH±2=Y2+12λ3v2 mA2=mH±2+12(λ4λ5)v2 mh,H2=12([λ1+λ5]v2v4(λ1λ5)2+4v4λ62)\begin{aligned} m^2_{H^\pm} &= Y_2 + \tfrac12\lambda_3 v^2 \ m^2_A &= m^2_{H^\pm} + \tfrac12(\lambda_4 - \lambda_5)v^2 \ m^2_{h,H} &= \tfrac12 \left( [\lambda_1 + \lambda_5]v^2 \mp \sqrt{ v^4 (\lambda_1 - \lambda_5)^2 + 4v^4\lambda_6^2 } \right) \end{aligned} with mixing angle

tan2γ=2λ6v2(λ1λ5)v2\tan 2\gamma = \frac{2\lambda_6 v^2}{(\lambda_1 - \lambda_5) v^2}

This potential is subject to theoretical constraints (vacuum stability, perturbative unitarity), and experimental constraints from electroweak and flavor observables (Hou et al., 2022).

3. FCNH Processes and Rare Kaon Decays

The presence of tree-level FCNH couplings in g2HDM significantly affects rare kaon processes, providing powerful probes of the new scalar sector and extra Yukawa couplings. The dominant effects involve charged Higgs–top loops and can be analyzed as follows:

  • εK\varepsilon_K from ΔS=2\Delta S=2: The NP contribution arises via H+H^+-mediated and WH+W H^+-mediated box diagrams, with effective Hamiltonian:

Heff=CHH(dˉγμPLs)2+CWH(dˉγμPLs)2+h.c.\mathcal H_{\rm eff} = C_{HH}(\bar d\gamma^\mu P_L s)^2 + C_{WH}(\bar d\gamma^\mu P_L s)^2 + \text{h.c.}

The coefficients depend on products such as Vi1ρijρkjVk2V_{i1}^*\rho_{ij}\rho_{kj}^*V_{k2} and loop functions F1,2(xi)F_{1,2}(x_i). Imposing εKNP<0.2×103|\varepsilon_K^{\rm NP}|<0.2\times10^{-3} constrains ρct\rho_{ct} and ρtt\rho_{tt}, with ρct0.06|\rho_{ct}| \lesssim 0.06 for mH+=400m_{H^+}=400 GeV, relaxing to 0.2\sim 0.2 for mH+=1m_{H^+}=1 TeV (Hou et al., 2022).

  • ε/ε\varepsilon'/\varepsilon (ΔS=1\Delta S=1 penguins): Charged Higgs penguins contribute to four-fermion operators QVLLqQ^q_{VLL}, QVLRqQ^q_{VLR}, QSLRdQ^d_{SLR} and the chromo-dipole operator O8gO_{8g}. The Wilson coefficients are linear in bilinears of ρij\rho_{ij} and loop functions G1,12,ZG_{1,12,Z}. NP can induce up to O(104)\mathcal O(10^{-4}) shifts in ε/ε\varepsilon'/\varepsilon for ρtt,ρtcO(1)\rho_{tt}, \rho_{tc} \sim \mathcal O(1).
  • K+π+ννˉK^+ \to \pi^+\nu\bar{\nu} and KLπ0ννˉK_L\to\pi^0\nu\bar{\nu}: The rare decays are governed by NP contributions to XeffX_{\text{eff}}. H+H^+-top penguins provide:

CLLab=δab16π2(Vρu)2i(ρuV)i1GZ(mi2mH+2)C_{LL}^{ab} = -\frac{\delta_{ab}}{16\pi^2} (V^\dagger \rho^u)_{2i} (\rho^{u\dagger} V)_{i1} G_Z \left( \frac{m_i^2}{m_{H^+}^2} \right)

Critically, the K+K^+ mode is uniquely sensitive to H+H^+ at the TeV scale due to a double CKM enhancement:

CLLVtsVtd[ρtt+VcsVtsρct][ρtt+VcdVtdρct]GZ(mt2mH+2)\frac{C_{LL}}{V_{ts}^* V_{td}} \propto \left[ \rho_{tt} + \frac{V_{cs}^*}{V_{ts}^*} \rho_{ct} \right] \left[ \rho_{tt}^* + \frac{V_{cd}}{V_{td}} \rho_{ct}^* \right] G_Z\left(\frac{m_t^2}{m_{H^+}^2}\right)

This structure allows, for mH+=1m_{H^+}=1 TeV and ρct0.2|\rho_{ct}|\sim 0.2, the branching ratio B(K+π+ννˉ)\mathcal B(K^+ \to \pi^+ \nu \bar{\nu}) to saturate the current NA62 upper bound [1.060.34+0.40]×1010[1.06^{+0.40}_{-0.34}] \times 10^{-10} (Hou et al., 2022).

  • KL,Sμ+μK_{L,S} \to \mu^+\mu^-: Short-distance contributions involve the same ZH+ZH^+ penguins, but large long-distance uncertainties dilute sensitivity beyond kaon and BB-meson constraints.

4. Global Parameter Correlations, Benchmark Scans, and Flavor Constraints

A global scan of the g2HDM parameter space over ρtt,ρtc[0,1]|\rho_{tt}|, |\rho_{tc}| \in [0,1], ρct[0,0.3]|\rho_{ct}| \in [0,0.3], and arbitrary phases (Hou et al., 2022), with mH+=400,1000m_{H^+}=400,\,1000 GeV, imposing constraints from:

  • BsB_s and BdB_d mixing, SψKSS_{\psi K_S}, SψϕS_{\psi\phi},
  • B(BsXsγ)\mathcal B(B_s\to X_s\gamma), B(Bsμ+μ)\mathcal B(B_s\to\mu^+\mu^-),
  • εKNP<2×104|\varepsilon_K^{\rm NP}| < 2\times10^{-4},
  • ε/εNP<104|\varepsilon'/\varepsilon|_{\rm NP} < 10^{-4},
  • NA62 bound on B(K+)\mathcal B(K^+),

yields, for mH+=400m_{H^+}=400 GeV, ρct0.06|\rho_{ct}| \lesssim 0.06, ρtt1|\rho_{tt}| \lesssim 1, ρtc1|\rho_{tc}| \lesssim 1; and for mH+=1000m_{H^+}=1000 GeV, ρct0.2|\rho_{ct}| \lesssim 0.2 (Hou et al., 2022).

K+π+ννˉK^+ \to \pi^+\nu\bar{\nu} is the most sensitive probe of ρct\rho_{ct} and mH+m_{H^+}, driving tight correlations with εK\varepsilon_K and, to a lesser extent, Bsμ+μB_s\to\mu^+\mu^-. For TeV-scale H+H^+, enhancement in B(K+)\mathcal B(K^+) typically anti-correlates with a slight suppression in B(Bsμ+μ)\mathcal B(B_s\to\mu^+\mu^-), offering cross-validation between kaon and BB physics as experimental precision improves.

5. Complementarity with B Physics and EDM Probes

Kaon processes are complemented by BB-physics and electric dipole moment (EDM) constraints in restricting the parameter space of the g2HDM. εKNP<2×104|\varepsilon_K^{\rm NP}| < 2\times10^{-4} is already competitive with BB-meson mixing constraints for ρct\rho_{ct}, particularly for lighter H+H^+ masses. The unique double CKM enhancement in K+π+ννˉK^+ \to \pi^+\nu\bar{\nu} renders this mode highly sensitive—even at the TeV scale—while the alignment limit remains consistent with existing collider searches for SM-like h(125)h(125) (Hou et al., 2022).

When supplemented with EDM data, the allowed region in ρ\rho couplings is further restricted. However, top-associated couplings (ρtt\rho_{tt}, ρtc\rho_{tc}, ρct\rho_{ct}) remain the most weakly constrained by direct searches and EDMs, provided an approximate SM-like Yukawa hierarchy.

6. Phenomenological Summary and Outlook

The g2HDM, by lifting the Z2Z_2 constraint and permitting generic extra Yukawa couplings, realizes an SM-like h(125)h(125) while allowing rich CP- and flavor-violating phenomena through the extended Higgs sector. Kaon mixing and rare decays—especially K+π+ννˉK^+ \to \pi^+\nu\bar{\nu}—are exquisitely sensitive to the up-type off-diagonal ρu\rho^u, with direct implications for charged Higgs scales up to several TeV. This unique complementarity of KK and BB physics, along with EDM and direct LHC searches, provides a multifaceted probe of the g2HDM flavor structure, making g2HDM both a compelling NP scenario and a prime target for the next generation of flavor and intensity frontier experiments (Hou et al., 2022).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Whiteboard

Topic to Video (Beta)

Follow Topic

Get notified by email when new papers are published related to Generalized Two-Higgs-Doublet Model (g2HDM).

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube