Papers
Topics
Authors
Recent
2000 character limit reached

Electroweak Symmetry Breaking (EWSB)

Updated 25 December 2025
  • EWSB is the process whereby the SU(2)L × U(1)Y symmetry is broken to U(1)EM, primarily via the Higgs mechanism that endows W and Z bosons with mass.
  • Multiple theoretical models—from vacuum stability and finite-QFT approaches to gravity-induced and dynamical mechanisms—offer diverse explanations and implications for mass generation.
  • The phenomenon is central to particle physics, impacting collider measurements, electroweak precision tests, and searches for new physics such as gauge-Higgs unification.

Electroweak symmetry breaking (EWSB) is the process by which the SU(2)L_L\timesU(1)U(1)_YgaugesymmetryoftheStandardModel(SM)isspontaneouslyreducedtoU(1) gauge symmetry of the Standard Model (SM) is spontaneously reduced to U(1)_\text{EM},givingmassestotheWandZbosonswhileleavingthephotonmassless.Thephenomenoniscentraltothegaugestructureandparticle<ahref="https://www.emergentmind.com/topics/multiagentsystemsmass"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">mass</a>generationintheSMandisrealizedthroughthe<ahref="https://www.emergentmind.com/topics/higgsmechanism"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Higgsmechanism</a>,butdiversetheoreticalrealizationsandphenomenologicalimplicationsexistacrossawiderangeofextensionsandalternatives.</p><h2class=paperheadingid=standardmodelhiggsmechanismandphenomenology>1.StandardModelHiggsMechanismandPhenomenology</h2><p>IntheStandardModel,theHiggssectorisdescribedbyacomplexSU(2)doubletφwithscalarpotential</p><p>, giving masses to the W and Z bosons while leaving the photon massless. The phenomenon is central to the gauge structure and particle <a href="https://www.emergentmind.com/topics/multi-agent-systems-mass" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">mass</a> generation in the SM and is realized through the <a href="https://www.emergentmind.com/topics/higgs-mechanism" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Higgs mechanism</a>, but diverse theoretical realizations and phenomenological implications exist across a wide range of extensions and alternatives.</p> <h2 class='paper-heading' id='standard-model-higgs-mechanism-and-phenomenology'>1. Standard-Model Higgs Mechanism and Phenomenology</h2> <p>In the Standard Model, the Higgs sector is described by a complex SU(2) doublet φ with scalar potential</p> <p>V(\phi) = \mu^2 \phi^\dagger\phi + \lambda(\phi^\dagger\phi)^2$</p> <p>with λ &gt; 0. For μ² &lt; 0, the minimum occurs at nonzero vacuum expectation value (VEV) $v = \sqrt{-\mu^2/\lambda} \approx 246\,\text{GeV},breakingSU(2), breaking SU(2)_L×\timesU(1)Y_Y → U(1)EM_\text{EM}. Gauge bosons acquire masses mW2=14g2v2m_W^2 = \tfrac14 g^2 v^2, mZ2=14(g2+g2)v2m_Z^2 = \tfrac14(g^2+g^{\prime 2})v^2; the physical Higgs boson h has mh2=2λv2m_h^2 = 2\lambda v^2 and trilinear self-coupling λ3=mh2/(2v2)0.13\lambda_3 = m_h^2/(2v^2) \approx 0.13, fixed by mhm_h and vv (Moffat, 14 Mar 2025). Radiative corrections to mWm_W are encapsulated by the parameter Δr\Delta r; the SM prediction (mWSM80.357m_W^\text{SM}\approx80.357 GeV) and recent measurements (CDF 2022: 80.4335±0.009480.4335\pm0.0094 GeV) show mild tension.

Direct measurement of the Higgs trilinear coupling requires double-Higgs final states; current constraints are 1.2<κλ<7.5-1.2 < \kappa_\lambda < 7.5 (95% CL), with significant improvements only expected at future s100\sqrt{s}\gtrsim 100 TeV colliders (Moffat, 14 Mar 2025).

2. Vacuum Stability, Radiative Corrections, and UV Sensitivity

RG running of the Higgs quartic coupling λ is dominated by the top Yukawa. For mh125m_h \approx 125 GeV and mt173m_t \approx 173 GeV, λ becomes negative at scale ΛI1010\Lambda_I \sim 10^{10}101110^{11} GeV—implying a metastable vacuum, with the instability scale shifted by changes in λ3\lambda_3 or yty_t (Moffat, 14 Mar 2025). If λ remains positive up to MPlM_\text{Pl}, the vacuum is absolutely stable; if it crosses zero at lower scales, the electroweak vacuum is metastable or unstable.

Alternative finite quantum field theory (finite-QFT) approaches construct UV-finite models without spontaneous breaking: masses arise radiatively from nonlocal loop integrals. In such models, v=0v=0 and the vacuum is strictly stable; all observed masses and couplings persist, resolving fine-tuning issues without SSB (Moffat, 14 Mar 2025).

3. Non-Minimal Coupling and Gravity-Induced EWSB

Gravity can induce EWSB in classically scale-invariant setups with nonminimal Higgs–curvature coupling and R2R^2 terms, as in

LJ=ξΦΦR+ξ24λR2λΦ(ΦΦ)2(DμΦ)DμΦ+LmL_{\rm J} = \xi_*\Phi^\dagger\Phi R + \frac{\xi_*^2}{4\lambda_*} R^2 - \lambda_\Phi(\Phi^\dagger\Phi)^2 - (D_\mu\Phi)^\dagger D^\mu\Phi + L_m

where everything is dimensionless (Shtanov, 2023). After a Weyl rescaling to the Einstein frame and field redefinition, the resulting scalar potential is

Veff(Φ)=λ(ΦΦ12v2)2V_\mathrm{eff}(\Phi) = \lambda\Big(\Phi^\dagger\Phi - \tfrac12 v^2\Big)^2

with v2=M2/ξv^2 = M^2/\xi. Thus, the electroweak scale vv is determined by the ratio M2/ξM^2/\xi (with ξ1032\xi\sim 10^{32}), entirely induced by the gravitational sector. The R2R^2 coefficient fixes the Higgs self-coupling λ\lambda via ξ2/(4λ)ξ2/(4λ)\xi_*^2/(4\lambda_*)\simeq\xi^2/(4\lambda) at low scales, giving λ0.13\lambda\simeq0.13.

A shift-symmetric (massless) dilaton φ\varphi arises from the original scale invariance. Majorana mass terms for right-handed neutrinos can be generated as mψ=γvm_\psi = \gamma v, constrained by Higgs total width to mψ[10,60]m_\psi \notin [10,60] GeV. This class inherits naturalness problems: the Planck/electroweak hierarchy enters as a huge ξ\xi, while the observed small cosmological constant enforces extremely small quartics, requiring λΦ1\lambda_\Phi\ll1 and thus reintroducing fine-tuning (Shtanov, 2023).

4. Dynamical Electroweak Symmetry Breaking

4.1 QCD-Induced Higgs Portal EWSB

Dynamical EWSB can be realized with a new colored scalar SS in a large representation of SU(3)cSU(3)_c, with classically scale-invariant Lagrangian and a Higgs-portal coupling (Kubo et al., 2014):

L=LSM,noH ⁣ ⁣mass+DμS2λS(SS)2+λHS(HH)(SS)+λH(HH)2+\mathcal{L} = \mathcal{L}_{\rm SM,no\,H\!-\!mass} + |D_\mu S|^2 - \lambda_S (S^\dagger S)^2 + \lambda_{HS}(H^\dagger H)(S^\dagger S) + \lambda_H(H^\dagger H)^2 + \cdots

At a critical scale Λ\Lambda (TeV range for large-dim SS), SS condenses, inducing an effective Higgs mass term via the portal. The Higgs VEV and mass are then recovered with λHS0.008\lambda_{HS}\sim0.008 at Λ1\Lambda\sim 1 TeV. Scalar mass mSm_S is bounded 350GeVmS3TeV350\:\mathrm{GeV}\lesssim m_S\lesssim 3\:\mathrm{TeV} by RGE and LHC searches. This construction softens the hierarchy problem, with all scales arising by dimensional transmutation. Charged SS can enhance hγγh\rightarrow\gamma\gamma up to 30%. The mechanism requires further extensions for full phenomenological viability (neutrino mass, dark matter, baryogenesis) (Kubo et al., 2014).

4.2 Heavy Fermion Condensation

A heavy chiral fourth generation with supercritical Yukawa coupling can drive EWSB by forming a ψˉψ\langle\bar\psi\psi\rangle condensate (Hung, 2013). The critical coupling is αc=π/2\alpha_c=\pi/2; above this, composite Higgs doublets emerge from fermion bilinears, with the electroweak VEV supplied by the condensate. This avoids the hierarchy problem inherent in elementary Higgs scenarios. Mixing with fundamental scalars can realize a light 126 GeV boson, with other scalars and vectorlike fermions at the TeV scale. The scenario naturally yields a large top Yukawa via the Rubakov–Callan effect, while lighter fermion masses arise from higher-order operators, suppressing flavor-changing neutral currents.

4.3 Monopole Condensation

Massless chiral fermions carrying both electric and magnetic hypercharge can develop condensates when magnetic hypercharge becomes strong (αm4π\alpha_m\sim4\pi) at the TeV scale (Csaki et al., 2010). The resulting composite doublets break SU(2)L_L\timesU(1)U(1)_Yvia via \langle\psi_L\,\bar\psi_R\rangle\sim Handinducegaugebosonmasses.TheRubakovCallaneffectenforcesalargetopmass,whilelighterfermionsaresuppressed.Theresultingtechnicolorlikescenarioistestablethroughexoticmultiphotonsignalsfromdyonpairproduction.</p><h2class=paperheadingid=extradimensionsholographyandgaugehiggsunification>5.ExtraDimensions,Holography,andGaugeHiggsUnification</h2><h3class=paperheadingid=warpedextradimensions>5.1WarpedExtraDimensions</h3><p>EWSBcanberealizedbyabulkHiggsscalarinasliceofAdS and induce gauge boson masses. The Rubakov–Callan effect enforces a large top mass, while lighter fermions are suppressed. The resulting technicolor-like scenario is testable through exotic multi-photon signals from dyon pair production.</p> <h2 class='paper-heading' id='extra-dimensions-holography-and-gauge-higgs-unification'>5. Extra Dimensions, Holography, and Gauge-Higgs Unification</h2><h3 class='paper-heading' id='warped-extra-dimensions'>5.1 Warped Extra Dimensions</h3> <p>EWSB can be realized by a bulk Higgs scalar in a slice of AdS_5,withtheIRlocalizedprofilesolvingthehierarchyproblemthroughmetricredshift(<ahref="/papers/1107.1989"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Gersdorff,2011</a>).The5Dprofilesatisfiesbranelocalizedboundaryconditions;theHiggsmassandquarticaredeterminedbyoverlapintegrals.KaluzaKleinvectorsacquireTeVscalemasses,contributingtoobliqueparameters:</p><p>, with the IR-localized profile solving the hierarchy problem through metric redshift (<a href="/papers/1107.1989" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Gersdorff, 2011</a>). The 5D profile satisfies brane-localized boundary conditions; the Higgs mass and quartic are determined by overlap integrals. Kaluza–Klein vectors acquire TeV–scale masses, contributing to oblique parameters:</p> <p>\hat T \sim (ky_1)\,\epsilon^2,\quad \hat S\sim\epsilon^2</p><p>where</p> <p>where \epsilon=m_W/m_\mathrm{KK}.IRdeformationscansoftenKKHiggscouplingsandrelaxS,Tconstraints,allowing. IR-deformations can soften KK-Higgs couplings and relax S,T constraints, allowing m_\mathrm{KK}\sim13TeVconsistentwithprecisiontests.</p><h3class=paperheadingid=gaugehiggsunification>5.2GaugeHiggsUnification</h3><p>Inthe5D TeV consistent with precision tests.</p> <h3 class='paper-heading' id='gauge-higgs-unification'>5.2 Gauge-Higgs Unification</h3> <p>In the 5D Sp(6)gaugeHiggsunification(<ahref="/papers/2411.02808"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Maruetal.,5Nov2024</a>),theSMHiggsarisesasthefifthcomponent gauge-Higgs unification (<a href="/papers/2411.02808" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Maru et al., 5 Nov 2024</a>), the SM Higgs arises as the fifth component A_5ofthegaugefield.Electroweaksymmetrybreakingisinducedatoneloopviabulkfermions:thecombinedgaugeandfermionCasimirpotentialfortheWilsonlinephasedevelopsanontrivialVEV,with of the gauge field. Electroweak symmetry breaking is induced at one-loop via bulk fermions: the combined gauge and fermion Casimir potential for the Wilson line phase develops a nontrivial VEV, with \sin^2\theta_W=1/4atthecompactificationscale.Realistic at the compactification scale. Realistic m_W=80GeVand GeV and m_h\approx 125GeVareachievedforacompactificationscale34TeV,afteraddingsuitablefermioncontent.</p><h3class=paperheadingid=holographicbottomuprealizations>5.3HolographicBottomupRealizations</h3><p>5DbottomupmodelswithhyperscalingviolatingbackgroundsandappropriateIRboundaryconditionscanrealizespontaneousbreakingofweaklygauged GeV are achieved for a compactification scale 3–4 TeV, after adding suitable fermion content.</p> <h3 class='paper-heading' id='holographic-bottom-up-realizations'>5.3 Holographic Bottom-up Realizations</h3> <p>5D bottom-up models with hyperscaling-violating backgrounds and appropriate IR boundary conditions can realize spontaneous breaking of weakly-gauged U(1)_L\times U(1)_RtothediagonalsubgroupbyimposingIRlocalizedmasstermsforaxialfields(<ahref="/papers/1504.07949"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Elanderetal.,2015</a>).Theresultingspectrumcontainsascalar(dilaton)andvectorresonances,withthespin1(technirho)massboundedby to the diagonal subgroup by imposing IR-localized mass terms for axial fields (<a href="/papers/1504.07949" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Elander et al., 2015</a>). The resulting spectrum contains a scalar (“dilaton”) and vector resonances, with the spin-1 (technirho) mass bounded by m_1 \gtrsim 2.43.7TeVbyprecisionSparameterconstraints.</p><h2class=paperheadingid=electroweakphasetransitioncosmologyandcolliderimplications>6.ElectroweakPhaseTransition,Cosmology,andColliderImplications</h2><p>ThenatureoftheEWSBphasetransitionhasdirectcosmologicalandcolliderconsequences:</p><ul><li>IntheSM( TeV by precision S-parameter constraints.</p> <h2 class='paper-heading' id='electroweak-phase-transition-cosmology-and-collider-implications'>6. Electroweak Phase Transition, Cosmology, and Collider Implications</h2> <p>The nature of the EWSB phase transition has direct cosmological and collider consequences:</p> <ul> <li>In the SM (m_h=125GeV),latticestudiesconfirmthetransitionisasmoothcrossover;onlyfor GeV), lattice studies confirm the transition is a smooth crossover; only for m_h\lesssim7080GeVisitfirstorder(<ahref="/papers/1912.07189"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">RamseyMusolf,2019</a>).</li><li>BSMscalarextensions(singlet/triplet/multipletorinertdoublet)withsuitableportalcouplingsordimensional6operatorscancatalyzea<ahref="https://www.emergentmind.com/topics/stronglyfirstorderphasetransition"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">stronglyfirstorderphasetransition</a>if GeV is it first-order (<a href="/papers/1912.07189" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Ramsey-Musolf, 2019</a>).</li> <li>BSM scalar extensions (singlet/triplet/multiplet or inert doublet) with suitable portal couplings or dimensional-6 operators can catalyze a <a href="https://www.emergentmind.com/topics/strongly-first-order-phase-transition" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">strongly first-order phase transition</a> if m_\phi\lesssim300700GeVand GeV and a_2\sim1(<ahref="/papers/1912.07189"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">RamseyMusolf,2019</a>,<ahref="/papers/1212.5652"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Pateletal.,2012</a>,<ahref="/papers/2202.08295"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Caietal.,2022</a>,<ahref="/papers/1504.05195"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Blinovetal.,2015</a>,<ahref="/papers/1906.11664"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Bianetal.,2019</a>).</li><li>MultisteptransitionsandtwostageEWSB(withanewscalarbreakingsymmetryathighertemperature,followedbytheSMHiggs)supportelectroweakbaryogenesis,provided (<a href="/papers/1912.07189" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Ramsey-Musolf, 2019</a>, <a href="/papers/1212.5652" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Patel et al., 2012</a>, <a href="/papers/2202.08295" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Cai et al., 2022</a>, <a href="/papers/1504.05195" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Blinov et al., 2015</a>, <a href="/papers/1906.11664" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Bian et al., 2019</a>).</li> <li>Multi-step transitions and two-stage EWSB (with a new scalar breaking symmetry at higher temperature, followed by the SM Higgs) support electroweak baryogenesis, provided v_c/T_c \gtrsim 1forsuppressionofsphaleronwashout(<ahref="/papers/1504.05195"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Blinovetal.,2015</a>,<ahref="/papers/1212.5652"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Pateletal.,2012</a>).Realizationsininert2HDMpredictlightnewscalars for suppression of sphaleron washout (<a href="/papers/1504.05195" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Blinov et al., 2015</a>, <a href="/papers/1212.5652" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Patel et al., 2012</a>). Realizations in inert-2HDM predict light new scalars \lesssim 60GeV(<ahref="/papers/1504.05195"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Blinovetal.,2015</a>).</li><li>Cosmologicalphasehistoriesareprobedby<ahref="https://www.emergentmind.com/topics/gravitationalwavesignatures"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">gravitationalwavesignatures</a>(soundwaveandturbulencecontributions)withenergydensities GeV (<a href="/papers/1504.05195" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Blinov et al., 2015</a>).</li> <li>Cosmological phase histories are probed by <a href="https://www.emergentmind.com/topics/gravitational-wave-signatures" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">gravitational wave signatures</a> (sound-wave and turbulence contributions) with energy densities h^2\Omega_\mathrm{sw} \sim 10^{-11}at at f_\mathrm{peak}\sim 10^{-3}Hz,accessibletoLISA/BBO/DECIGO(<ahref="/papers/1906.11664"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Bianetal.,2019</a>,<ahref="/papers/2202.08295"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Caietal.,2022</a>).</li><li>ColliderprospectsareinformedbythenecessarycouplingsandmassesthatinducestrongfirstorderEWSB:scalarswithO(1)mixing,partialwidthmodificationsin Hz, accessible to LISA/BBO/DECIGO (<a href="/papers/1906.11664" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Bian et al., 2019</a>, <a href="/papers/2202.08295" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Cai et al., 2022</a>).</li> <li>Collider prospects are informed by the necessary couplings and masses that induce strong first-order EWSB: scalars with O(1) mixing, partial width modifications in h\to\gamma\gamma(upto (up to \sim 20%), and heavy Higgs searches. Strong direct limits exist for masses below \sim 350GeV(<ahref="/papers/1403.4262"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Kuboetal.,2014</a>,<ahref="/papers/1212.5652"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Pateletal.,2012</a>,<ahref="/papers/1906.11664"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Bianetal.,2019</a>,<ahref="/papers/1912.07189"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">RamseyMusolf,2019</a>).</li></ul><h2class=paperheadingid=precisiontestsdarkmatterandmodeldiscriminatingobservables>7.PrecisionTests,DarkMatter,andModelDiscriminatingObservables</h2><ul><li>AssociatedHiggsproductionprocesses( GeV (<a href="/papers/1403.4262" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Kubo et al., 2014</a>, <a href="/papers/1212.5652" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Patel et al., 2012</a>, <a href="/papers/1906.11664" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Bian et al., 2019</a>, <a href="/papers/1912.07189" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Ramsey-Musolf, 2019</a>).</li> </ul> <h2 class='paper-heading' id='precision-tests-dark-matter-and-model-discriminating-observables'>7. Precision Tests, Dark Matter, and Model-Discriminating Observables</h2> <ul> <li>Associated Higgs production processes (pp\to th,, gg\to Zh)attheLHCaredirectlysensitivetothesignsandmagnitudesofHiggsgaugetopcouplings.CombinedLHCRunIIfitresultsfavortheSMsignpatternfor) at the LHC are directly sensitive to the signs and magnitudes of Higgs–gauge–top couplings. Combined LHC Run-II fit results favor the SM sign pattern for (\kappa_t,\kappa_W,\kappa_Z),rulingoutexoticalternatives(<ahref="/papers/2104.12689"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Xieetal.,2021</a>).</li><li>InHiggsportalormulticomponentdarkmattermodels,EWSBdefinesasharpboundaryforfreezein/freezeout;massthresholdsandthermalratesdifferaboveandbelow, ruling out exotic alternatives (<a href="/papers/2104.12689" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Xie et al., 2021</a>).</li> <li>In Higgs-portal or multi-component dark matter models, EWSB defines a sharp boundary for freeze-in/freeze-out; mass thresholds and thermal rates differ above and below T_c\sim 160$ GeV, affecting the accessible parameter space for WIMP/FIMP scenarios (Bhattacharya et al., 2021).

  • Gravitational waves, direct searches, and indirect Higgs observables (loop-induced widths, signal strengths, and heavy scalar states) provide complementary probes of the EWSB mechanism’s nature and thermal history, with non-observation in large mass windows set to exclude broad new-physics regions (Ramsey-Musolf, 2019, Bian et al., 2019, Patel et al., 2012).
  • 8. Scale-Invariance, Weyl Geometry, and Alternative Paradigms

    • Classically scale-invariant models (e.g., Coleman–Weinberg–type, gravity-induced) generate the electroweak scale through dimensional transmutation or curvature-induced mechanisms, typically requiring large nonminimal Higgs–curvature coupling or boundary-induced masses (Shtanov, 2023, Cai et al., 2022, Scholz, 2011).
    • Weyl geometric gravity proposes that the Higgs quadratic term arises from nonminimal coupling to the Weyl scalar curvature, not as an explicit tachyon. Mass arises as a form of gravitational “charge,” and the would-be Higgs fluctuation is predicted to be dynamically ultralight (O\mathcal{O}(eV)), testable in fifth-force experiments but not at colliders (Scholz, 2011).

    For further technical developments and explicit treatments—including RG effects in supersymmetry, phase transition dynamics, gravitational wave computations, and the detailed structure of composite, extra-dimensional, or radiatively-induced EWSB—see (Allanach et al., 2012, Elander et al., 2015, Harnik et al., 2016, Bhattacharya et al., 2021, Patel et al., 2012, Ramsey-Musolf, 2019, Bian et al., 2019, Blinov et al., 2015, Manna et al., 2023). Each mechanism provides unique phenomenological targets and theoretical implications for ongoing and future experimental programs.

    Definition Search Book Streamline Icon: https://streamlinehq.com
    References (19)

    Whiteboard

    Topic to Video (Beta)

    Follow Topic

    Get notified by email when new papers are published related to Electroweak Symmetry Breaking (EWSB).