Floquet Spin Chain Dynamics
Updated 17 October 2025
- Floquet spin chains are quantum systems with a time-periodic Hamiltonian that generate nonequilibrium phases and transitions unseen in static models.
- The discrete Lyapunov equation and covariance matrix formulation provide a powerful method to analyze stationary Floquet states and spectral bifurcations.
- Experimental implementations using platforms like trapped ions and superconducting circuits enable controlled studies of dynamic quantum phase transitions.
A Floquet spin chain is a quantum spin chain whose Hamiltonian is periodic in time. The system is engineered and analyzed using the framework of Floquet theory, enabling the investigation of rich nonequilibrium phases and transitions that arise solely due to the time-periodic driving. Many of the physical phenomena in Floquet spin chains, including long-range order, topological phase transitions, information propagation, and dynamical stabilization, have no static analogs. These systems can be realized as periodically kicked or modulated spin-1/2 XY or Ising chains and are central to current research in nonequilibrium quantum many-body physics.
In a periodically driven open many-body quantum spin system described by a Markovian master equation with time-periodic Liouvillian L(t+τ)=L(t),
dtdρ=L(t)ρ
the stationary Floquet state ρF is defined via invariance under the one-period propagator: (τ,0)ρF=ρF. For quasi-free systems, such as the XY spin chain mapped by Jordan-Wigner transformation to quadratic Majorana fermions, the state is encoded in a covariance matrix Cjk(t)=tr[wjwkρ(t)]−δjk, which evolves according to a matrix Riccati equation:
C˙(t)=−X(t)C(t)−C(t)XT(t)+Y(t)
where X(t) and Y(t) are 2n×2n matrices defined by the system’s Hamiltonian and dissipative processes.
In the case of a kicked system (X(t)=X0+δτ(t)X1), the covariance after one period can be expressed as
C(τ)=QC(0)QT−PQT
with Q,P constructed from X0,X^1andsolutionstothesteady−stateLyapunovequationX^0 Z + Z(X^0)^T = Y.Imposingperiodicity(C_F = C(0) = C(\tau))yieldsadiscreteLyapunovequationforthestationarystate:</p><p>Q(\tau) C_F - C_F Q^{-T}(\tau) = P(\tau)</p><p>ThesolutionC_FgivesthesteadyFloquetstate.Thisformiscrucialforbothnumericalandanalyticalinvestigationofsteadystatesinopen,periodicallydrivenquadraticsystems(<ahref="/papers/1103.4710"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Prosenetal.,2011</a>).</p><h2class=′paper−heading′id=′phase−diagram−exponential−versus−long−range−spin−correlations′>2.PhaseDiagram:ExponentialversusLong−RangeSpinCorrelations</h2><p>ApplyingthisformulationtotheperiodicallykickedXYspin−1/2chain(withalternatingexchangeanddelta−functiontransversefield),thestationarystateexhibitstwodistinctregimesinitsspin–spincorrelationfunctions:</p><ul><li><strong>Exponentialdecay:</strong>TheresidualcorrelatorC_\text{res} = \frac{\sum_{j,k:|j-k|\geq n/2} |C_{j,k}|}{\# \text{ pairs}}fallsoffrapidlywithsystemsize,signifyingshort−rangeorder.</li><li><strong>Long−rangemagneticcorrelations(LRMC):</strong>C_\text{res}scalesas1/n(forchainsizen),indicatingcorrelationspersistatlongdistances.</li></ul><p>Thephasediagram,asafunctionofanisotropy\gamma,kickperiod\tau,andmagneticfieldstrengthh,ishighlynontrivial:ratherthanasingletransition,therearecomplex,re−entrant“ribs”orbandsofLRMCphasesinterspersedwithshort−rangephases.Thatis,byvarying\tauorh(withfixed\gamma),thesystemcanrepeatedlytransitionbetweenthesephases,aphenomenonuniquetoFloquetdriving.</p><h2class=′paper−heading′id=′quasiparticle−dispersion−and−stationary−points−origin−of−phases′>3.QuasiparticleDispersionandStationaryPoints:OriginofPhases</h2><p>There−entrantstructureofthephasediagramisexplainedviathepropertiesoftheFloquetquasiparticledispersionrelation.Intheabsenceofboundarydissipation,theproblemreduces(viatranslationalinvariance)tothefollowingFloqueteigenvalueequation:</p><p>\theta_{1,2}(\kappa) = \pm \arccos \left[\cos(2\tau h) \cos(2\tau \epsilon(\kappa)) + \sin(2\tau h)\sin(2\tau \epsilon(\kappa)) \frac{\cos\kappa}{\epsilon(\kappa)}\right]</p><p>with\epsilon(\kappa) = \sqrt{\cos^2\kappa + \gamma^2\sin^2\kappa}.</p><p>Acentralresultisthatthetransitionfromexponentialtolong−rangeorderistightlylinkedtotheappearanceofnontrivialstationarypoints\kappa^*(with\kappa^* \neq 0, \pi)whered\theta/d\kappa=0.TheLRMCphaseariseswhenatleastonesuchstationarypointexists.</p><p>Nearaphaseboundary,expanding\theta(\kappa)inpowersof\kappa:</p><p>\theta(\kappa) = \theta_0 + a(\gamma,\tau,h)\kappa^2 + b(\gamma,\tau,h)\kappa^4 + \cdots</p><p>Achangeinsignofa(\gamma,\tau,h)signalstheemergenceofnontrivialstationarypoints,andthecorrespondingcriticalfieldh_csatisfiesa(\gamma,\tau,h_c)=0.Thetotalnumbern_\sharp + 2ofstationarypoints(includingthetrivialonesat0and\pi)matchespreciselythestructureoftheLRMCandexponentialphasesaswellasthescalingofoperatorblockentropyinFloquetoperatorspace.</p><p>Thiscorrespondenceprovidesamicroscopiccriterionforlong−rangeorderinperiodicallydrivenchains:<strong>Re−entrantLRMCphasesareadirectconsequenceof“Floquetbifurcations”inthequasienergyspectrum</strong>,notpresentinundrivensystems.</p><h2class=′paper−heading′id=′mathematical−and−physical−implications′>4.MathematicalandPhysicalImplications</h2><p>ThediscreteLyapunovequationencapsulatesthetime−periodicsteadystateandistractableduetothequasi−freenatureofthemodel.Thekeymathematicalstructuresandphysicalconsequencescanbesummarizedasfollows:</p><divclass=′overflow−x−automax−w−fullmy−4′><tableclass=′tableborder−collapsew−full′style=′table−layout:fixed′><thead><tr><th>Aspect</th><th>MathematicalExpression</th><th>PhysicalImpact</th></tr></thead><tbody><tr><td>StationaryFloquetstate</td><td>Q(\tau) C_F - C_F Q^{-T}(\tau) = P(\tau)$</td>
<td>Determines unique steady-state covariance</td>
</tr>
<tr>
<td>Dispersion & phase</td>
<td>$\theta(\kappa) = \pm \arccos( \ldots )</td><td>Identifiesstationarypoints,phaseboundaries</td></tr><tr><td>Residualcorrelator</td><td>C_\text{res} \sim 1/n(LRMC)ordecays\simexp(-n/\xi$)
Characterizes long-range vs. exponential decay |
The phase diagram, including LRMC and exponential regions, and their re-entrant sequence, is thus controlled by spectral properties rather than integrability or static frustration.
Beyond foundational interest, the link between stationary point counting of the Floquet spectrum and observable long-range order provides a rigorous, predictive framework for classifying nonequilibrium quantum phases. Floquet engineering of spin chains opens avenues for dynamically stabilized phases and transitions inaccessible in equilibrium, with direct implications for quantum simulation and control.
The general framework based on the discrete Lyapunov equation is strictly valid for open, quadratic (quasi-free) systems. While many phenomena reminiscent of those in interacting chains may emerge, the description may not fully capture interaction-driven effects such as many-body localization or anomalous heating regimes found in more generic Floquet spin chains. The precise role of dissipation strength, boundary effects, and non-Markovian environments remains an important direction for further investigation.
This systematic structure of Floquet-driven XY chains—combining analytic tractability, spectral–correlator correspondence, and experimental relevance—illustrates the subtlety and richness of nonequilibrium quantum matter under periodic driving.