Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

On quasiconformal non-equivalence of gasket Julia sets and limit sets (2402.12709v1)

Published 20 Feb 2024 in math.DS, math.CV, and math.GT

Abstract: This paper studies quasiconformal non-equivalence of Julia sets and limit sets. We proved that any Julia set is quasiconformally different from the Apollonian gasket. We also proved that any Julia set of a quadratic rational map is quasiconformally different from the gasket limit set of a geometrically finite Kleinian group.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. N. Bogachev, A. Kolpakov and A. Kontorovich. Kleinian sphere packings, reflection groups, and arithmeticity. Math. Comp., 93: 505-521, 2024.
  2. M. Bonk, B. Kleiner and S. Merenkov. Rigidity of Schottky set. Amer. J. Math., 131(2): 409–443, 2009.
  3. M. Bonk, M. Lyubich and S. Merenkov. Quasisymmetries of Sierpiśki carpet Julia sets. Adv. Math., 301: 383–422, 2016.
  4. Quasisymmetric rigidity of square Sierpinśki carpets. Ann. of Math. (2), 177: 591–643, 2013.
  5. A proof of the positive density conjecture for integer Apollonian circle packings. J. Amer. Math. Soc., 24(4): 945–967, 2011.
  6. On the local-global conjecture for integral Apollonian gaskets. Invent. Math., 196(3): 589–650, 2014.
  7. Hyperbolic-parabolic deformations of rational maps. Sci. China Math., 61: 2157–2220, 2018.
  8. A proof of Thurston’s topological characterization of rational functions. Acta. Math., 171: 263–297, 1993.
  9. D. Dudko. Matings with laminations. arXiv:1112.4780, 2011.
  10. Apollonian circle packings: number theory. J. Number Theory, 100: 1–45, 2003.
  11. Apollonian circle packings: geometry and group theory I. the Apollonian group. Discrete Comput. Geom., 34: 547–585, 2005.
  12. Convergence of pinching deformations and matings of geometrically finite polynomials. Fund. Math., 181:143–188, 2004.
  13. M. Kapovich and A. Kontorovich. On superintegral Kleinian sphere packings, gugs, and arithmetic groups. J. Reine Angew. Math., 798: 105–142, 2023.
  14. Geometry and arithmetic of crystallographic sphere packings. Proc. Nat. Acad. Sci., 116(2): 436–441, 2019.
  15. Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. J. Amer. Math. Soc., 24: 603–648, 2011.
  16. R. Lodge, Y. Luo and S. Mukherjee. Circle packings, kissing reflection groups and critically fixed anti-rational maps. Forum Math. Sigma, vol. 10, paper no. e3, 2022.
  17. R. Lodge, Y. Luo and S. Mukherjee. On deformation space analogies between Kleinian reflection groups and antiholomorphic rational maps. Geom. Funct. Anal., 32: 1428–1485, 2022.
  18. On dynamical gaskets generated by rational maps, Kleinian groups, and Schwarz reflections. Conform. Geom. Dyn., 27(1): 1–54, 2023.
  19. J. Luo. Combinatorics and holomorphic dynamics: captures, matings and Newton’s method. PhD Thesis, Cornell University, 1995.
  20. Circle packings, renormalizations and subdivision rules arXiv:2308.13151, 2023.
  21. B. Maskit. Intersections of component subgroups of Kleinian groups. In L. Greenberg, editor, Discontinuous Groups and Riemann Surfaces: Proceedings of the 1973 Conference at the University of Maryland, 349–367. Ann. Math. St. 79, Princeton University Press, 1974.
  22. C. McMullen. Iteration on Teichmüller space. Invent. Math., 99: 425–454, 1990
  23. S. Merenkov. Local rigidity for hyperbolic groups with Sierpiński carpet boundaries. Compos. Math., 150(11): 1928–1938, 2014.
  24. J. Milnor. Geometry and dynamics of quadratic rational maps, with an appendix by the author and Lei Tan. Exp. Math., 2(1): 37–83, 1993.
  25. J. Milnor. Dynamics in One Complex Variable. (AM-160). Princeton University Press, 2006.
  26. The asymptotic distribution of circles in the orbits of Kleinian groups. Invent. Math., 187: 1–35, 2012.
  27. Combining rational maps and controlling obstructions. Ergodic Theory Dynam. Systems, 18: 221–245, 1998.
  28. W. Qiu, F. Yang and J. Zeng. Quasisymmetric geometry of Sierpiński carpet Julia sets. Fund. Math., 244: 73–107, 2019.
  29. D. Sullivan. On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. In I. Kra and B. Maskit, editors, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, 465-496. Ann. Math. St. 97, Princeton University Press, 1981.
  30. L. Tan. Matings of quadratic polynomials. Ergodic Theory Dynam. Systems, 12: 589–620, 1992
  31. W. Thurston. Hyperbolic structures on 3-manifolds I: Deformation of acylindrical manifolds. Ann. of Math., 124: 203–246, 1986.
  32. B. Wittner. On the bifurcation loci of rational maps of degree two. PhD Thesis, Cornell University, 1988.
  33. Y. Zhang. Elementary planes in the Apollonian orbifold. Trans. Amer. Math. Soc., 376(1): 453–506, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.