Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps (1311.3727v3)

Published 15 Nov 2013 in math.DS and math.CV

Abstract: We give three families of parabolic rational maps and show that every Cantor set of circles as the Julia set of a non-hyperbolic rational map must be quasisymmetrically equivalent to the Julia set of one map in these families for suitable parameters. Combining a result obtained before, we give a complete classification of the Cantor circles Julia sets in the sense of quasisymmetric equivalence. Moreover, we study the regularity of the components of the Cantor circles Julia sets and establish a sufficient and necessary condition when a component of a Cantor circles Julia set is a quasicircle.

Summary

We haven't generated a summary for this paper yet.