Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 31 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

End-to-End Speech Recognition with High-Frame-Rate Features Extraction (1907.01957v2)

Published 3 Jul 2019 in eess.AS, cs.CL, and cs.SD

Abstract: State-of-the-art end-to-end automatic speech recognition (ASR) extracts acoustic features from input speech signal every 10 ms which corresponds to a frame rate of 100 frames/second. In this report, we investigate the use of high-frame-rate features extraction in end-to-end ASR. High frame rates of 200 and 400 frames/second are used in the features extraction and provide additional information for end-to-end ASR. The effectiveness of high-frame-rate features extraction is evaluated independently and in combination with speed perturbation based data augmentation. Experiments performed on two speech corpora, Wall Street Journal (WSJ) and CHiME-5, show that using high-frame-rate features extraction yields improved performance for end-to-end ASR, both independently and in combination with speed perturbation. On WSJ corpus, the relative reduction of word error rate (WER) yielded by high-frame-rate features extraction independently and in combination with speed perturbation are up to 21.3% and 24.1%, respectively. On CHiME-5 corpus, the corresponding relative WER reductions are up to 2.8% and 7.9%, respectively, on the test data recorded by microphone arrays and up to 11.8% and 21.2%, respectively, on the test data recorded by binaural microphones.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.