Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Frame-Synchronous and Label-Synchronous Systems for Speech Recognition (2107.00764v1)

Published 1 Jul 2021 in eess.AS

Abstract: Commonly used automatic speech recognition (ASR) systems can be classified into frame-synchronous and label-synchronous categories, based on whether the speech is decoded on a per-frame or per-label basis. Frame-synchronous systems, such as traditional hidden Markov model systems, can easily incorporate existing knowledge and can support streaming ASR applications. Label-synchronous systems, based on attention-based encoder-decoder models, can jointly learn the acoustic and language information with a single model, which can be regarded as audio-grounded LLMs. In this paper, we propose rescoring the N-best hypotheses or lattices produced by a first-pass frame-synchronous system with a label-synchronous system in a second-pass. By exploiting the complementary modelling of the different approaches, the combined two-pass systems achieve competitive performance without using any extra speech or text data on two standard ASR tasks. For the 80-hour AMI IHM dataset, the combined system has a 13.7% word error rate (WER) on the evaluation set, which is up to a 29% relative WER reduction over the individual systems. For the 300-hour Switchboard dataset, the WERs of the combined system are 5.7% and 12.1% on Switchboard and CallHome subsets of Hub5'00, and 13.2% and 7.6% on Switchboard Cellular and Fisher subsets of RT03, up to a 33% relative reduction in WER over the individual systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qiujia Li (18 papers)
  2. Chao Zhang (907 papers)
  3. Philip C. Woodland (50 papers)
Citations (4)