Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Morphological Word Segmentation on Agglutinative Languages for Neural Machine Translation (2001.01589v1)

Published 2 Jan 2020 in cs.CL

Abstract: Neural machine translation (NMT) has achieved impressive performance on machine translation task in recent years. However, in consideration of efficiency, a limited-size vocabulary that only contains the top-N highest frequency words are employed for model training, which leads to many rare and unknown words. It is rather difficult when translating from the low-resource and morphologically-rich agglutinative languages, which have complex morphology and large vocabulary. In this paper, we propose a morphological word segmentation method on the source-side for NMT that incorporates morphology knowledge to preserve the linguistic and semantic information in the word structure while reducing the vocabulary size at training time. It can be utilized as a preprocessing tool to segment the words in agglutinative languages for other NLP tasks. Experimental results show that our morphologically motivated word segmentation method is better suitable for the NMT model, which achieves significant improvements on Turkish-English and Uyghur-Chinese machine translation tasks on account of reducing data sparseness and language complexity.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube