Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved English to Russian Translation by Neural Suffix Prediction (1801.03615v1)

Published 11 Jan 2018 in cs.CL

Abstract: Neural machine translation (NMT) suffers a performance deficiency when a limited vocabulary fails to cover the source or target side adequately, which happens frequently when dealing with morphologically rich languages. To address this problem, previous work focused on adjusting translation granularity or expanding the vocabulary size. However, morphological information is relatively under-considered in NMT architectures, which may further improve translation quality. We propose a novel method, which can not only reduce data sparsity but also model morphology through a simple but effective mechanism. By predicting the stem and suffix separately during decoding, our system achieves an improvement of up to 1.98 BLEU compared with previous work on English to Russian translation. Our method is orthogonal to different NMT architectures and stably gains improvements on various domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kai Song (21 papers)
  2. Yue Zhang (618 papers)
  3. Min Zhang (630 papers)
  4. Weihua Luo (63 papers)
Citations (9)