Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neural News Recommendation with Negative Feedback (2101.04328v1)

Published 12 Jan 2021 in cs.IR

Abstract: News recommendation is important for online news services. Precise user interest modeling is critical for personalized news recommendation. Existing news recommendation methods usually rely on the implicit feedback of users like news clicks to model user interest. However, news click may not necessarily reflect user interests because users may click a news due to the attraction of its title but feel disappointed at its content. The dwell time of news reading is an important clue for user interest modeling, since short reading dwell time usually indicates low and even negative interest. Thus, incorporating the negative feedback inferred from the dwell time of news reading can improve the quality of user modeling. In this paper, we propose a neural news recommendation approach which can incorporate the implicit negative user feedback. We propose to distinguish positive and negative news clicks according to their reading dwell time, and respectively learn user representations from positive and negative news clicks via a combination of Transformer and additive attention network. In addition, we propose to compute a positive click score and a negative click score based on the relevance between candidate news representations and the user representations learned from the positive and negative news clicks. The final click score is a combination of positive and negative click scores. Besides, we propose an interactive news modeling method to consider the relatedness between title and body in news modeling. Extensive experiments on real-world dataset validate that our approach can achieve more accurate user interest modeling for news recommendation.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.