Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FeedRec: News Feed Recommendation with Various User Feedbacks (2102.04903v2)

Published 9 Feb 2021 in cs.IR

Abstract: Accurate user interest modeling is important for news recommendation. Most existing methods for news recommendation rely on implicit feedbacks like click for inferring user interests and model training. However, click behaviors usually contain heavy noise, and cannot help infer complicated user interest such as dislike. Besides, the feed recommendation models trained solely on click behaviors cannot optimize other objectives such as user engagement. In this paper, we present a news feed recommendation method that can exploit various kinds of user feedbacks to enhance both user interest modeling and model training. We propose a unified user modeling framework to incorporate various explicit and implicit user feedbacks to infer both positive and negative user interests. In addition, we propose a strong-to-weak attention network that uses the representations of stronger feedbacks to distill positive and negative user interests from implicit weak feedbacks for accurate user interest modeling. Besides, we propose a multi-feedback model training framework to learn an engagement-aware feed recommendation model. Extensive experiments on a real-world dataset show that our approach can effectively improve the model performance in terms of both news clicks and user engagement.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chuhan Wu (87 papers)
  2. Fangzhao Wu (81 papers)
  3. Tao Qi (43 papers)
  4. Yongfeng Huang (110 papers)
Citations (69)

Summary

We haven't generated a summary for this paper yet.