Papers
Topics
Authors
Recent
Search
2000 character limit reached

Behavioral Analytics for Continuous Insider Threat Detection in Zero-Trust Architectures

Published 10 Jan 2026 in cs.CR and cs.DC | (2601.06708v1)

Abstract: Insider threats are a particularly tricky cybersecurity issue, especially in zero-trust architectures (ZTA) where implicit trust is removed. Although the rule of thumb is never trust, always verify, attackers can still use legitimate credentials and impersonate the standard user activity. In response, behavioral analytics with ML can help monitor the user activity continuously and identify the presence of anomalies. This introductory framework makes use of the CERT Insider Threat Dataset for data cleaning, normalization, and class balance using the Synthetic Minority Oversampling Technique (SMOTE). It also employs Principal Component Analysis (PCA) for dimensionality reduction. Several benchmark models, including Support Vector Machine (SVM), Artificial Neural Network (ANN), and Bayesian Network (Bayes Net), were used to develop and evaluate the AdaBoost classifier. Compared to SVM (90.1%), ANN (94.7%), and Bayes Net (94.9), AdaBoost achieved higher performance with a 98.0% ACC, 98.3% PRE, 98.0% REC, and F1-score (F1). The Receiver Operating Characteristic (ROC) study, which provided further confirmation of its strength, yielded an Area Under the Curve (AUC) of 0.98. These results prove the effectiveness and dependability of AdaBoost-based behavioral analytics as a solution to reinforcing continuous insider threat detection in zero-trust settings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.