Papers
Topics
Authors
Recent
2000 character limit reached

An Ethically Grounded LLM-Based Approach to Insider Threat Synthesis and Detection (2509.06920v1)

Published 8 Sep 2025 in cs.CR, cs.AI, cs.CL, and cs.CY

Abstract: Insider threats are a growing organizational problem due to the complexity of identifying their technical and behavioral elements. A large research body is dedicated to the study of insider threats from technological, psychological, and educational perspectives. However, research in this domain has been generally dependent on datasets that are static and limited access which restricts the development of adaptive detection models. This study introduces a novel, ethically grounded approach that uses the LLM Claude Sonnet 3.7 to dynamically synthesize syslog messages, some of which contain indicators of insider threat scenarios. The messages reflect real-world data distributions by being highly imbalanced (1% insider threats). The syslogs were analyzed for insider threats by both Claude Sonnet 3.7 and GPT-4o, with their performance evaluated through statistical metrics including precision, recall, MCC, and ROC AUC. Sonnet 3.7 consistently outperformed GPT-4o across nearly all metrics, particularly in reducing false alarms and improving detection accuracy. The results show strong promise for the use of LLMs in synthetic dataset generation and insider threat detection.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.