Papers
Topics
Authors
Recent
2000 character limit reached

Kolmogorov-Arnold Graph Neural Networks Applied to Inorganic Nanomaterials Dataset (2512.19494v1)

Published 22 Dec 2025 in cs.LG and cs.AI

Abstract: The recent development of Kolmogorov-Arnold Networks (KANs) introduced new discoveries in the field of Graph Neural Networks (GNNs), expanding the existing set of models with KAN-based versions of GNNs, which often surpass the accuracy of MultiLayer Perceptron (MLP)-based GNNs. These models were widely tested on the graph datasets consisting of organic molecules; however, those studies disregarded the inorganic nanomaterials datasets. In this work, we close this gap by applying Kolmogorov-Arnold Graph Neural Networks (KAGNNs) to a recently published large inorganic nanomaterials dataset called CHILI. For this, we adapt and test KAGNNs appropriate for this dataset. Our experiments reveal that on the CHILI datasets, particularly on the CHILI-3K, KAGNNs substantially surpass conventional GNNs in classification, achieving state-of-the-art results.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.