Systematic Benchmarking of SUMO Against Data-Driven Traffic Simulators (2512.18537v1)
Abstract: This paper presents a systematic benchmarking of the model-based microscopic traffic simulator SUMO against state-of-the-art data-driven traffic simulators using large-scale real-world datasets. Using the Waymo Open Motion Dataset (WOMD) and the Waymo Open Sim Agents Challenge (WOSAC), we evaluate SUMO under both short-horizon (8s) and long-horizon (60s) closed-loop simulation settings. To enable scalable evaluation, we develop Waymo2SUMO, an automated pipeline that converts WOMD scenarios into SUMO simulations. On the WOSAC benchmark, SUMO achieves a realism meta metric of 0.653 while requiring fewer than 100 tunable parameters. Extended rollouts show that SUMO maintains low collision and offroad rates and exhibits stronger long-horizon stability than representative data-driven simulators. These results highlight complementary strengths of model-based and data-driven approaches for autonomous driving simulation and benchmarking.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.