Papers
Topics
Authors
Recent
2000 character limit reached

A Formal Descriptive Language for Learning Dynamics: A Five-Layer Structural Coordinate System (2512.18525v1)

Published 20 Dec 2025 in cs.CY and cs.AI

Abstract: Understanding learning as a dynamic process is challenging due to the interaction of multiple factors, including cognitive load, internal state change, and subjective evaluation. Existing approaches often address these elements in isolation, limiting the ability to describe learning phenomena within a unified and structurally explicit framework. This paper proposes a multi-layer formal descriptive framework for learning dynamics. Rather than offering a predictive or prescriptive model, the framework introduces a symbolic language composed of state variables, mappings, and layer-specific responsibilities, enabling consistent description of learning processes without commitment to specific functional forms or optimization objectives. This descriptive framework is intended to serve as a structural substrate for analyzing learning processes in human learners, and by extension, in adaptive and Al-assisted learning systems. A central design principle is the explicit separation of descriptive responsibilities across layers, distinguishing load generation, internal understanding transformation, observation, and evaluation. Within this structure, cognitive load is treated as a relational quantity arising from interactions between external input and internal organization, while subjective evaluation is modeled as a minimal regulatory interface responding to learning dynamics and environmental conditions. By emphasizing descriptive clarity and extensibility, the framework provides a common language for organizing existing theories and supporting future empirical and theoretical work.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.